با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا دانشکده فیزیک، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانشکده فیزیک، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در سال‌های اخیر استفاده از یادگیری عمیق در کشاورزی دقیق به‌منظور تشخیص و شمارش آفات و یا بیماری‌های گیاهان، سمپاشی هوشمند، تخمین سطح زیر کشت و نظارت بر روند رشد گیاهان جهت مقابله با عوامل بازدارنده و یا کاهش‌دهنده رشد و با هدف افزایش بهره‌وری محصولات کشاورزی به سرعت رو به افزایش است. در این مقاله، به طراحی الگوریتمی برگرفته از شبکه عصبی عمیق YOLOv5s جهت تشخیص و شمارش خودکار کاکل‌های گیاه ذرت پرداخته شده است. برای این منظور، از تصاویر اخذ شده توسط پهپاد از مزرعه ذرت در دو تاریخ متفاوت جهت آموزش و ارزیابی شبکه استفاده گردیده و با توجه به نوع و اندازه داده به اعمال تغییراتی در معماری و تابع فعال‌سازی الگوریتم اصلی YOLOv5s با هدف افزایش تعداد پارامترهای شبکه، کاهش بیش برازش و افزایش دقت تشخیص پرداخته شد و الگوریتم Modified YOLOv5s که به اختصار MYOLOv5s نام دارد به‌عنوان نسخه بهبودیافته YOLOv5s با قابلیت شناسایی و شمارش کاکل‌های ذرت با مقادیر ضریب تبیین (R2) 99.28 درصد و دقت متوسط (AP) 95.30 درصد حاصل شد. همچنین، عملکرد روش پیشنهادی به‌کار گرفته شده در این مقاله با الگوریتم‌های معتبر معرفی شده در این زمینه ,TasselNetv2+ Faster R-CNN و RetinaNet مقایسه گردید. نتایج به‌دست‌آمده نشان می‌دهد که مقادیر ضریب تبیین برای این سه شبکه به‌ترتیب 77.86، 86.83 و 95.53 درصد می‌­باشد. همچنین برای الگوریتم‌های Faster R-CNN و RetinaNet مقادیر دقت متوسط 76.99 و 77.66 درصد به‌دست آمد. این نتایج نشان می­‌دهند که الگوریتم MYOLOv5s حداکثر مقادیر ضریب تبیین R2 و دقت متوسط (AP)، دقت (Precision) و یادآوری (Recall) را دارد که بیانگر کارایی بالای روش پیشنهادی در تشخیص کاکل ذرت است. شایان ذکر است MYOLOv5s با دارا بودن سرعت پردازش 84 فریم بر ثانیه سریع‌ترین روش در تشخیص کاکل ذرت محسوب می­‌گردد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. Pages 1-6. 2017 International Conference on Engineering and Technology (ICET): IEEE. https://doi.org/1109/ICEngTechnol.2017.8308186
  2. Alzadjali, A., Alali, M. H., Sivakumar, A. N. V., Deogun, J. S., Scott, S., Schnable, J. C., & Shi, Y. (2021). Maize Tassel Detection from UAV Imagery Using Deep Learning. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2021.600410
  3. Bisong, E. (2019). Building machine learning and deep learning models on Google Cloud Platform. Springer.
  4. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934
  5. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
  6. Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., & Saurous, R. A. (2017). Tensorflow distributions. arXiv preprint arXiv: 1711.10604. https://doi.org/10.48550/arXiv.1711.10604
  7. Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 107, 3-11. https://doi.org/10.1016/j.neunet.2017.12.012
  8. Farhadi, A., & Redmon, J. (2018). Yolov3: An incremental improvement. Pages 1804-2767. Computer Vision and Pattern Recognition: Springer Berlin/Heidelberg, Germany. https://doi.org/10.48550/arXiv.1804.02767
  9. Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R., Wang, X., Singh, A. K., Singh, A., Hirafuji, M., & Ninomiya, S. (2019). A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics https://doi.org/10.34133/2019/1525874
  10. Gómez-Flores, W., Garza-Saldaña, J. J., & Varela-Fuentes, S. E. (2019). Detection of huanglongbing disease based on intensity-invariant texture analysis of images in the visible spectrum. Computers and Electronics in Agriculture, 162, 825-835. https://doi.org/10.1016/j.compag.2019.05.032
  11. Habib, A. F., Kim, E. M., & Kim, C. J. (2007). New methodologies for true orthophoto generation. Photogrammetric Engineering & Remote Sensing, 73, 25-36.
  12. Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information and Computer Sciences, 44, 1-12. https://doi.org/10.1021/ci0342472
  13. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
  14. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., & Vasudevan, V. (2019). Searching for mobilenetv3. Pages 1314-1324. Proceedings of the IEEE/CVF International Conference on Computer Vision.
  15. Jocher, G., et al. (2020). Yolov5. https://github.com/ultralytics/yolov5
  16. Lempitsky, V., & Zisserman, A. (2010). Learning to count objects in images. Advances in Neural Information Processing Systems, 23, 1324-1332.
  17. Leung, H., & Haykin, S. (1991). The complex backpropagation algorithm. IEEE Transactions on Signal Processing, 39, 2101-2104. https://doi.org/10.1109/78.134446
  18. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Pages 2117-2125. Proceedings of the IEEE conference on computer vision and pattern recognition.
  19. Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance segmentation. Pages 8759-8768. Proceedings of the IEEE conference on computer vision and pattern recognition.
  20. Liu, Y., Cen, C., Che, Y., Ke, R., Ma, Y., & Ma, Y. (2020). Detection of maize tassels from UAV RGB imagery with faster R-CNN. Remote Sensing, 12, 338. https://doi.org/10.3390/rs12020338
  21. Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., & Ding, E. (2020). PP-YOLO: An effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099. https://doi.org/10.48550/arXiv.2007.12099
  22. Lu, H., & Cao, Z. (2020). Tasselnetv2+: A fast implementation for high-throughput plant counting from high-resolution RGB imagery. Frontiers in Plant Science, 11, 1929. https://doi.org/10.3389/fpls.2020.541960
  23. Lu, H., Cao, Z., Xiao, Y., Zhuang, B., & Shen, C. (2017). TasselNet: counting maize tassels in the wild via local counts regression network. Plant Methods, 13, 1-17. https://doi.org/10.1186/s13007-017-0224-0
  24. Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. Pages 1-6. 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE): IEEE.
  25. Parihar, C., Jat, S., Singh, A., Kumar, R. S., Hooda, K., GK, C., & Singh, D. (2011). Maize production technologies in India.
  26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8026-8037.
  27. Pourreza, A., Lee, W. S., Etxeberria, E., & Banerjee, A. (2015). An evaluation of a vision-based sensor performance in Huanglongbing disease identification. Biosystems Engineering, 130, 13-22. https://doi.org/10.1016/j.biosystemseng.2014.11.013
  28. Quan, L., Feng, H., Lv, Y., Wang, Q., Zhang, C., Liu, J., & Yuan, Z. (2019). Maize seedling detection under different growth stages and complex field environments based on an improved Faster R–CNN. Biosystems Engineering, 184, 1-23. https://doi.org/10.1016/j.biosystemseng.2019.05.002
  29. Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. Pages 7263-7271. Proceedings of the IEEE conference on computer vision and pattern recognition.
  30. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Pages 779-788. Proceedings of the IEEE conference on computer vision and pattern recognition.
  31. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. Pages 658-666. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  32. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Pages 1874-1883. Proceedings of the IEEE conference on computer vision and pattern recognition.
  33. Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Pages 1015-1021. Australasian joint conference on artificial intelligence: Springer.
  34. Tagne, A., Feujio, T., & Sonna, C. (2008). Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. Pages 12-15. International Conference Diversifying crop protection.
  35. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. Pages 648-656. Proceedings of the IEEE conference on computer vision and pattern recognition.
  36. Ubbens, J., Cieslak, M., Prusinkiewicz, P., & Stavness, I. (2018). The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant methods, 14, 1-10. https://doi.org/10.1186/s13007-018-0273-z
  37. Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. Pages 390-391. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops.
  38. Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., & Shen, C. (2019). TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks. Plant Methods, 15, 1-14. https://doi.org/10.1186/s13007-019-0537-2
  39. Zhu, M. (2004). Recall, precision and average precision. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo 2: 6.
  40. Zou, H., Lu, H., Li, Y., Liu, L., & Cao, Z. (2020). Maize tassels detection: a benchmark of the state of the art. Plant Methods, 16, 1-15. https://doi.org/10.1186/s13007-020-00651-z
CAPTCHA Image