با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی بیوسیستم، دانشکده مهندسی کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

2 گروه مهندسی بیوسیستم، دانشکده مهندسی کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

روند رو به رشد جمعیت جهان، افزایش اجتناب‌ناپذیر تقاضای انرژی را به همراه داشته و این امر به غیر از پایان‌پذیر بودن منابع انرژی تجدیدناپذیر می‌تواند مشکلات فراوان زیست‌محیطی را به همراه داشته باشد. با توجه به اهمیت اثرات زیست‌محیطی و توسعه انرژی‌های تجدیدپذیر، استفاده از باد می‌تواند منبعی بسیار مطمئن برای تولید انرژی الکتریسته باشد. مطالعه حاضر به بررسی اثرات زیست‌محیطی تولید الکتریسیته در طول چرخه حیات نیروگاه‌های بادی (کهک و آقکند) در طول مراحل احداث تا بهره‌برداری این نیروگاه‌ها و شاخص تقاضای اکسرژی تجمعی، پرداخته است. در مطالعه حاضر واحد کارکردی یک کیلووات الکتریسیته انتخاب شد و داده‌ها در نرم‌افزار سیماپرو به روش +IMPACT2002 در قالب 15 شاخص میانی و چهار شاخص نهایی تحلیل شدند. نتایج نشان داد که مرحله مواد اولیه و تولید (از استخراج تا ساخت اجزا) بالاترین تاثیر را در ایجاد شاخص‌های میانی به همراه داشت که دلیل این امر استخراج، ساخت و تولید قطعات ازجمله ریخته‌گری فولاد با استفاده از انواع انرژی‌های تجدید‌ناپذیر و فعالیت‌هایی همچون جوشکاری در دمای بالا می‌باشد. همچنین میزان شاخص کل زیست‌محیطی دو نیروگاه بادی آقکند و کهک به‌ازای 1 کیلووات ساعت الکتریسیته تولیدی به‌ترتیب برابر 5.84 و 4.45 (μPt) بود و از‌ این مقدار به‌ترتیب 3.02 و 2.31 (μPt) مربوط به دسته خسارت سلامت انسان بود. همچنین بررسی شاخص تقاضای اکسرژی تجمعی نشان داد که منابع تجدید‌ناپذیر-فسیلی بیشترین سهم در تقاضای اکسرژی (به میزان 0.153MJ) را به ازای تولید یک کیلووات الکتریسیته از نیروگاه‌های احداث شده به خود اختصاص دادند.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

Aghahosseini, A., Bogdanov, D., Ghorbani, N., & Breyer, C. (2018). Analysis of 100% renewable energy for Iran in 2030: integrating solar PV, wind energy and storage. International Journal of Environmental Science and Technology, 15, 17-36. https://doi.org/10.1007/s13762-017-1373-4
Al-Muhammad, S., & Piriaei, M. (2013). Use life cycle assessment to compare greenhouse gas emissions from power plants. Third Conference on Environmental Planning and Management. University of Tehran, Iran.
Alsaleh, A., & Sattler, M. (2019). Comprehensive life cycle assessment of large wind turbines in the US. Clean Technologies and Environmental Policy, 21, 887-903. https://doi.org/10.1007/s10098-019-01678-0
Amani, A., & Hosseini Shamachi, A. (2009). The study of wind energy in the stations of the catchment area of the South Aras River. Journal of Geographical Space, 10, 1-26. (In Persian).
Azarpour, A., Suhaimi, S., Zahedi, G., & Bahadori, A. (2013). A review on the drawbacks of renewable energy as a promising energy source of the future. Arabian Journal for Science and Engineering, 38, 317-328. https://doi.org/10.1007/s13369-012-0436-6
Bidstrup, M. (2015). Life cycle thinking in impact assessment—Current practice and LCA gains. Environmental Impact Assessment Review, 54, 72-79. https://doi.org/10.1016/j.eiar.2015.05.003
Billinton, R., & Gao, Y. (2008). Multistate wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy. IEEE Transactions on Energy Conversion, 23, 163-170 https://doi.org/10.1109/tec.2006.882415
Bösch, M. E., Hellweg, S., Huijbregts, M. A., & Frischknecht, R. (2007). Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. The International Journal of Life Cycle Assessment, 12, 181-190. https://doi.org/10.1065/lca2006.11.282
Chipindula, J., Botlaguduru, V. S. V., Du, H., Kommalapati, R. R., & Huque, Z. (2018). Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability, 10, 2022. https://doi.org/10.3390/su10062022
Chu, Z., Zhao, T., Li, L., Fan, J., & Qin, Y. (2017). Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials, 10, 659. https://doi.org/10.3390/ma10060659
Dewulf, J., Bösch, M. E., De Meester, B., Van der Vorst, G., Van Langenhove, H., Hellweg, S., & Huijbregts, M. A. J. (2007). Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environmental Science & Technology, 41, 8477-8483. https://doi.org/10.1021/es0711415
Gkantou, M., Rebelo, C., & Baniotopoulos, C. (2020). Life cycle assessment of tall onshore hybrid steel wind turbine towers. Energies, 13, 3950. https://doi.org/10.3390/en13153950
Golbabaei, F., & Khadem, M. (2015). Air pollution in welding processes—assessment and control methods. Current Air Quality Issues, 33-63. https://doi.org/10.5772/59793
Guinée, J. B., & Lindeijer, E. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. Springer Science & Business Media.
Guleria, R., Bhushan, B., Guleria, A., Bhushan, A., & Dulari, P. (2019). Harmful effects of ionizing radiation. International Journal for Research in Applied Science and Engineering Technology, 7, 887-889. https://doi.org/10.22214/ijraset.2019.12141
Haapala, K. R., & Prempreeda, P. (2014). Comparative life cycle assessment of 2.0 MW wind turbines. International Journal of Sustainable Manufacturing, 3(2), 170-185. https://doi.org/10.1504/ijsm.2014.062496
Hendrickson, C. T., Lave, L. B., & Matthews, H. S. (2010). Environmental life cycle assessment of goods and services: an input-output approach. Routledge. https://doi.org/10.4324/9781936331383
Jolliet, O., Antón, A., Boulay, A., Cherubini, F., Fantke, P., Levasseur, A., McKone, T. E., Michelsen, O., Canals, L. M., Motoshita, M., Pfister, S., Verones, F., Vigon, B., & Frischknecht, R. (2018). Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. The International Journal of Life Cycle Assessment, 23, 2189-2207. https://doi.org/10.1007/s11367-018-1443-y
Joseph, V. S., Lucille, L., & Bruce, H. (2000). Greenhouse Gas Emissions of Electricity Generation Chain. IAEA Bulletin 42
Konstantinos, V., Karras, Y., Kohlhammer, J., Steiger, M., Tzovaras, D., & Gounopoulos, E. (2014). Enhanced Visual Analytics Services for the Optimal Planning of Renewable Energy Resources Installations. Pages 330-339. IFIP International Conference on Artificial Intelligence Applications and Innovations: Springer.
Kouloumpis, V., Sobolewski, R. A., & Yan, X. (2020). Performance and life cycle assessment of a small scale vertical axis wind turbine. Journal of Cleaner Production, 247, 119520. https://doi.org/10.1016/j.jclepro.2019.119520
Le Gourieres, D. (2014). Wind power plants: theory and design. Elsevier.
Li, H., Jiang, H. D., Dong, K. Y., Wei, Y. M., & Liao, H. (2020). A comparative analysis of the life cycle environmental emissions from wind and coal power. Evidence from China. Journal of Cleaner Production, 248, 119192 https://doi.org/10.1016/j.jclepro.2019.119192
Martínez, E., Latorre-Biel, J., Jiménez, E., Sanz, F., & Blanco, J. (2018). Life cycle assessment of a wind farm repowering process. Renewable and Sustainable Energy Reviews, 93, 260-271. https://doi.org/10.1016/j.rser.2018.05.044
Moore, J. (2021). A Comparison of the Environmental Effects of Renewable and Non-Renewable Energies.
Motahari, A., Ahmadian, M., Abedi, Z., & Ghaffarzadeh, H. (2014). Economic evaluation of wind power plants in Iran considering the effect of energy price liberalization policy. Iranian Journal of Energy Economics (Environmental and Energy Economics), 3, 179-200. (In Persian).
Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65, 995-1010. https://doi.org/10.1007/s00248-012-0159-y
Peng, C., Shen, Y., Wu, X., Yuan, P., Jiang, L., Chen, S., Ze, S., Wang, X., & Song, X. (2020). Heavy metals, nitrogen, and phosphorus in sediments from the first drinking water reservoir supplied by Yangtze River in Shanghai, China: Spatial distribution characteristics and pollution risk assessment. Water, Air, & Soil Pollution, 231, 1-15. https://doi.org/10.1007/s11270-020-04651-6
Raadal, H. L., Gagnon, L., Modahl, I. S., & Hanssen, O. J. (2011). Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renewable and Sustainable Energy Reviews, 15, 3417-3422. https://doi.org/10.1016/j.rser.2011.05.001
Rezaei Kalaj, S., & Oashk Sarai, L. (2014). Investigation of environmental effects of electricity generation technologies (Case study of Manjil wind and hydropower plant). The Second National and Specialized Conference on Environmental Research in Iran. Hamedan, Hegmataneh Association of Environmental Assessors. (In Persian).
Saber, Z., Esmaeili, M., Pirdashti, H., Motevali, A., & Nabavi-Pelesaraei, A. (2020). Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. Journal of Cleaner Production, 263, 121529. https://doi.org/10.1016/j.jclepro.2020.121529
Solomon, K. R. (2008). Effects of ozone depletion and UV‐B radiation on humans and the environment. Atmosphere-Ocean, 46, 185-202. https://doi.org/10.3137/ao.460109
Standardization, I. O. F. (2006). Environmental management: life cycle assessment; Principles and Framework. ISO.
Statistical, I. (2019). Annual statistical report of iran water and electricity industry, Statistical reports of water and electricity, Ministry of Energy. Retrieved from: https://isn.moe.gov.ir
Stavridou, N., Koltsakis, E., & Baniotopoulos, C. (2020). Life Cycle Analysis of lattice and tubular wind turbine towers. A comparative study. Pages 012071. IOP Conference Series: Earth and Environmental Science: IOP Publishing. https://doi.org/10.1088/1755-1315/410/1/012071.
Teffera, B., Assefa, B., Björklund, A., & Assefa, G. (2021). Life cycle assessment of wind farms in Ethiopia. The International Journal of Life Cycle Assessment, 26, 76-96. https://doi.org/10.1007/s11367-020-01834-5
Turkovska, O., Castro, G., Klingler, M., Nitsch, F., Regner, P. Soterroni, A. C. & Schmidt, J. (2021). Land-use impacts of Brazilian wind power expansion. Environmental Research Letters, 16, 024010. https://doi.org/10.5281/zenodo.4013396
Wang, S., & Wang, S. (2015). Impacts of wind energy on environment: A review. Renewable and Sustainable. Energy Reviews, 49, 437-443. https://doi.org/10.1016/j.rser.2015.04.137
Wang, L., Wang, Y., Du, H., Zuo, J., Li, R. Y. M., Zhou, Z., ... & Garvlehn, M. P. (2019). A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Applied Energy, 249, 37-45. https://doi.org/1/0,1016/j.apenergy.2019.04.099
Wang, S., Wang, S., & Liu, J. (2019). Life-cycle green-house gas emissions of onshore and offshore wind turbines. Journal of Cleaner Production, 210, 804-810. https://doi.org/10.1016/j.jclepro.2018.11.031
Xu, L., Pang, M., Zhang, L., Poganietz, W. R., & Marathe, S. D. (2018). Life cycle assessment of onshore wind power systems in China. Resources, Conservation and Recycling, 132, 361-368 https://doi.org/10.1016/j.resconrec.2017.06.014
Yuan, C., Bai, X., Zhu, T., Wen, Z., Cao, T., Zhang, X., & Ni, L. (2021). Long-Term Effects of the Harvesting of Trapa natans on Local Water Quality and Aquatic Macrophyte Community in Lake Erhai, China. Frontiers in Environmental Science, 9, 246. https://doi.org/10.3389/fenvs.2021.706746
Zare Thani, H., & Nisari, P. (2016). Wind energy and its life cycle evaluation. 10th National Congress of Agricultural Machinery Engineering (Biosystems) and Mechanization of Iran. Mashhad, Iran. (In Persian).
CAPTCHA Image