با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه مهندسی مکانیک بیوسیستم، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

4 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

چکیده

در کشاورزی دقیق، مکان‌یابی خودکار محصولات یکی از موضوعات تحقیقاتی مهم است. در این پژوهش شناسایی دقیق ردیف‌های کشت محصول ریحان به‌منظور مسیریابی خودکار یک ربات گزارش می‌شود. در یک مرحله از این تحقیق با اخذ تعداد شش تصویر در هر دوره‌ی رشد (هفته سوم، هفته چهارم و هفته پنجم) به حذف علف‌های هرز میان ردیف‌های کشت محصول پرداخته شد؛ که بدین منظور از سه روش مختلف (گشودگی مساحت، حذف ابعادی و ماسک‌گذاری) استفاده گردید. در مرحله‌ای دیگر تعداد شش تصویر از ردیف‌های کشت بدون وجود علف‌های هرز مورد بررسی قرار گرفت. سپس با انجام عملیات پردازش تصویر و پیاده‌سازی چندین الگوریتم مسیریابی (الگوریتم‌های مبتنی بر تبدیل هاف، تبدیل موجک، فیلتر گابور، رگرسیون خطی و الگوریتم پیشنهادی این مطالعه) بر روی تصاویر، به بررسی خروجی هر یک از این الگوریتم‌ها نسبت به مسیر ایده‌آل تعیین‌شده توسط کاربر پرداخته شد. پس از مقایسه‌ی دقیق مسیرهای تشخیص داده شده توسط الگوریتم‌های مختلف مسیریابی نسبت به مسیرهای ایده‌آل و با توجه به نتایج آزمون آماری t-test در سطح احتمال 5%، برتری روش‌های مسیریابی مورد مطالعه به‌ترتیب زیر مشخص گردید: روش پیشنهادی، روش فیلتر گابور، روش رگرسیون خطی، روش تبدیل هاف و روش تبدیل موجک. در نهایت الگوریتم پیشنهادی با بیشترین میزان انطباق نسبت به مسیر ایده‌آل (با میانگین خطای تشخیص 3.65 پیکسل) و کمترین مدت زمان اجرای عملیات (4.79 ثانیه) به‌عنوان مناسب‌ترین الگوریتم مسیریابی انتخاب و با استفاده از آن عملکرد یک ربات طراحی‌شده مورد ارزیابی قرار گرفت.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

Astrand, B., & Baerveldt, A. J. (2005). A vision based row-following system for agricultural field machinery. Mechatronics, 15, 251-269. https://doi.org/10.1016/j.mechatronics.2004.05.005
Bossu, J., Gee, C., Jones, G., & Truchetet, F. (2009). Wavelet transform to discriminate between crop and weed in perspective agronomic images. Computers and Electronics in Agriculture, 65, 133-143. https://doi.org/10.1016/j.compag.2008.08.004
Chaki, J., & Parekh, R. (2012). Plant leaf recognition using Gabor filter. International Journal of Computer Applications, 56(10). https://doi.org/10.5120/8927-3000
Chen, J., Qiang, H., Wu, J., Xu, G., Wang, Z., & Liu, X. (2020). Extracting the navigation path of a tomato-cucumber greenhouse robot based on a median point Hough transform. Computers and Electronics in Agriculture, 174, 105472. https://doi.org/10.1016/j.compag.2020.105472
Choi, K. H., Han, S. K., Han, S. H., Park, K. H., Kim, K. S., & Kim, S. (2015). Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Computers and Electronics in Agriculture, 113, 266-274. https://doi.org/10.1016/j.compag.2015.02.014
Dutta, M. K., Sengar, N., Kamble, N., Banerjee, K., Minhas, N., & Sarkar, B. (2016). Image processing based technique for classification of fish quality after cypermethrine exposure. LWT-Food Science and Technology, 68, 408-417. https://doi.org/10.1016/j.lwt.2015.11.059
Elstone, L., How, K. Y., Brodie, S., Ghazali, M. Z., Heath, W. P., & Grieve, B. (2020). High speed crop and weed identification in lettuce fields for precision weeding. Sensors, 20, 455. https://doi.org/10.3390/s20020455
Fontaine, V., & Crowe, T. (2006). Development of line-detection algorithms for local positioning in densely seeded crops. Canadian Biosystems Engineering, 48, 7.
Garcia-Santillan, I. D., Montalvo, M., Guerrero, J. M., & Pajares, G. (2017). Automatic detection of curved and straight crop rows from images in maize fields. Biosystems Engineering, 156, 61-79. https://doi.org/10.1016/j.biosystemseng.2017.01.013
Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support vector machines for crop/weeds identification in maize fields. Expert Systems with Applications, 39, 11149-11155. https://doi.org/10.1016/j.eswa.2012.03.040
Guerrero, J. M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., & Pajares, G. (2013). Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Systems with Applications, 40, 656-664. https://doi.org/10.1016/j.eswa.2012.03.040
Hague, T., & Tillett, N. (2001). A bandpass filter-based approach to crop row location and tracking. Mechatronics, 11, 1-12. https://doi.org/10.1016/S0957-4158(00)00003-9
Han, Y., Wang, Y., & Kang, F. (2012). Navigation line detection based on support vector machine for automatic agriculture vehicle. International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), (IET): https://doi.org/10.1049/cp.2012.1237
Hemming, J., & Rath, T. (2001). PA-Precision agriculture: Computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agricultural Engineering Research, 78, 233-243. https://doi.org/10.1006/jaer.2000.0639
Jiang, G., Wang, X., Wang, Z., & Liu, H. (2016). Wheat rows detection at the early growth stage based on Hough transform and vanishing point. Computers and Electronics in Agriculture, 123, 211-223. https://doi.org/10.1016/j.compag.2016.02.002
Jones, G., Gee, C., & Truchetet, F. (2009). Modeling agronomic images for weed detection and comparison of crop/weed discrimination algorithm performance. Precision Agriculture, 10, 1-15. https://doi.org/10.1007/s11119-008-9086-9
Kanagasingham, S., Ekpanyapong, M., & Chaihan, R. (2020). Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot. Precision Agriculture, 21, 831-855. https://doi.org/10.1007/s11119-019-09697-z
Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. Pages b1079-b1083 vol. 1072. Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003): IEEE. https://doi.org/10.1109/AIM.2003.1225492
Kiani, S., & A. Jafari. (2012). Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. Journal of Agricultural Science and Technology, 755-765.
Kurmi, Y., Gangwar, S., Agrawal, D., Kumar, S., & Srivastava, H. S. (2021). Leaf image analysis-based crop diseases classification. Signal, Image and Video Processing, 15, 589-597. https://doi.org/10.1007/s11760-020-01780-7
Leemans, V., & Destain, M. F. (2006). Application of the Hough transform for seed row localisation using machine vision. Biosystems Engineering, 94, 325-336. https://doi.org/10.1016/j.biosystemseng.2006.03.014
Li, X., Lloyd, R., Ward, S., Cox, J., Coutts, S., & Fox, C. (2022). Robotic crop row tracking around weeds using cereal-specific features. Computers and Electronics in Agriculture, 197, 106941.
Lin, S., Jiang, Y., Chen, X., Biswas, A., Li, S., Yuan, Z., Wang, H., & Qi, L. (2020). Automatic detection of plant rows for a transplanter in paddy field using faster r-cnn. IEEE Access, 8, 147231-147240. https://doi.org/10.1109/ACCESS.2020.3015891
Lopez‐Granados, F. (2011). Weed detection for site‐specific weed management: mapping and real‐time approaches. Weed Research, 51, 1-11. https://doi.org/10.1111/j.1365-3180.2010.00829.x
Mahmud, M. S. A., Abidin, M. S. Z., Mohamed, Z., Abd Rahman, M. K. I., & Iida, M. (2019). Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Computers and Electronics in Agriculture, 157, 488-499. https://doi.org/10.1016/j.compag.2019.01.016
Masuda, R., Fujimoto, S., Iida, M., & Suguri, M. (2013). A Method to Detect the Occurrence of Rice Plant Lodging Using Wavelet Transform. IFAC Proceedings Volumes, 46(18), 75-80. https://doi.org/10.3182/20130828-2-sf-3019.00048
Minaei, S., Mahdavian, A., & Banakar, A. (2015). Design and evaluation of a path detection algorithm in road images using Hough transform. Iranian Journal of Biosystems Engineering, 46, 85-93. (In Persian). https://doi.org/10.22059/IJBSE.2015.54340
Montalvo, M., Pajares, G., Guerrero, J. M., Romeo, J., Guijarro, M., Ribeiro, A., Ruz, J. J., & Cruz, J. (2012). Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems with Applications, 39, 11889-11897. https://doi.org/10.1016/j.eswa.2012.02.117
Nikolov, D. N., & Tsankova, D. D. (2018). Features extraction for pollen recognition using Gabor filters. Food Science and Applied Biotechnology, 1, 86-95. https://doi.org/10.30721/fsab2018.v1.i2.11
Palacin, J., & Martinez, D. (2021). Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments. Sensors, 21, 4763. https://doi.org/10.3390/s21144763
Ponnambalam, V. R., Bakken, M., Moore, R. J., Glenn Omholt Gjevestad, J., & Johan From, P. (2020). Autonomous crop row guidance using adaptive multi-roi in strawberry fields. Sensors, 20, 5249. https://doi.org/10.3390/s20185249
Rapacz, M., & Lazarz, R. (2020). Automatic extraction of leaf venation complex networks. ECAI, IOS Press, 1914-1921. https://doi.org/10.3233/FAIA200309
Rovira-Mas, F., Zhang, Q., Reid, J., & Will, J. (2005). Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 999-1010. https://doi.org/10.1243/095440705X34667
Slaughter, D. C., Giles, D., & Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61, 63-78. https://doi.org/10.1016/j.compag.2007.05.008
Søgaard, H. T., & Olsen, H. J. (2003). Determination of crop rows by image analysis without segmentation. Computers and Electronics in Agriculture, 38, 141-158. https://doi.org/10.1016/S0168-1699(02)00140-0
Tenhunen, H., Pahikkala, T., Nevalainen, O., Teuhola, J., Mattila, H., & Tyystjärvi, E. (2019). Automatic detection of cereal rows by means of pattern recognition techniques. Computers and Electronics in Agriculture, 162, 677-688. https://doi.org/10.1016/j.compag.2019.05.002
Thakral, S., & Manhas, P. (2018). Image processing by using different types of discrete wavelet transform. International Conference on Advanced Informatics for Computing Research: Springer 499-507. https://doi.org/10.1007/978-981-13-3140-4_45
Vidovic, I., Cupec, R., & Hocenski, Z. (2016). Crop row detection by global energy minimization. Pattern Recognition, 55, 68-86. https://doi.org/10.1016/j.patcog.2016.01.013
Vijayashree, T., & Gopal, A. (2015). Comparison procedure for the authentication of Basil (Ocimum tenuiflorum) leaf using image processing technique. In 2015 International Conference on Communications and Signal Processing (ICCSP) 0075-0078. IEEE. https://doi.org/10.1109/iccsp.2015.7322591
Vioix, J., Douzals, J., & Truchetet, F. (2004). Aerial detection and localization of weed by using multispectral and spatial approaches. AgEng2004, European Society of Agricultural Engineers, Leuven, Belgium, September: 12-16.
Winterhalter, W., Fleckenstein, F. V., Dornhege, C., & Burgard, W. (2018). Crop row detection on tiny plants with the pattern hough transform. IEEE Robotics and Automation Letters, 3(4), 3394-3401. https://doi.org/10.1109/lra.2018.2852841
Zhmud, V., Kondratiev, N., Kuznetsov, K., Trubin, V., & Dimitrov, L. (2018). Application of ultrasonic sensor for measuring distances in robotics. Journal of Physics: Conference Series: IOP Publishing, 3, 032189. https://doi.org/10.1088/1742-6596/1015/3/032189
CAPTCHA Image