با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

برای اعمال پیش‌تیمار جت برخوردی هوای داغ مرطوب به انگور و مطالعه چگونگی تأثیر آن بر تسریع در روند خشک کردن آن، سامانه‌ای طراحی و ساخته شد و مورد ارزیابی قرار گرفت. در این پژوهش تأثیر دما و مدت اعمال پیش‌تیمار (دماهای 90، 100 و 110 درجه سلسیوس و مدت‌های 30، 60، 90، 120 و 150 ثانیه) در سرعت جت هوای 10 متر بر ثانیه و رطوبت نسبی 40 درصد در قالب طرح آزمایشی فاکتوریل 5×3 بر پایه طرح کاملاً تصادفی با سه تکرار بر روند خشک شدن انگور به روش سایه‌خشک مورد ارزیابی قرار گرفت. نتایج بیانگر کاهش مدت خشک کردن با افزایش دما و مدت اعمال پیش‌تیمار بود. با افزایش مدت پیش‌تیمار از 30 به 150 ثانیه در دماهای 90، 100 و 110 درجه سلسیوس سرعت خشک کردن به‌ترتیب 31 درصد، 5/37 درصد و 45 درصد افزایش پیدا کرد. به‌علاوه، مدت اعمال پیش‌تیمار نسبت به دما تأثیر بیشتری بر افزایش سرعت خشک کردن در محدوده‌های اعمال‌شده داشت. در مقایسه با انگور شاهد (بدون اعمال پیش‌تیمار)، افزایش سرعت خشک کردن تحت تأثیر جت برخوردی هوای داغ مرطوب از 8 درصد برای مدت 30 ثانیه در دمای 90 درجه سلسیوس تا 68 درصد برای مدت 150 ثانیه در دمای 110 درجه سلسیوس تغییر یافت. براساس آنالیز رنگ، شاخص‌های رنگی کشمش‌ تولیدی با افزایش دما و مدت اعمال پیش‌تیمار بهبود پیدا کرد و دمای 110 درجه سلسیوس و محدوده مدت 150-90 ثانیه به‌عنوان شرایط مناسب اعمال پیش‌تیمار به‌دست آمد.

کلیدواژه‌ها

موضوعات

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ah-Hen, K., Zambra, C. E., Aguëro, J. E., Vega-Gálvez, A., & Lemus-Mondaca, R. (2013). Moisture diffusivity coefficient and convective drying modelling of murta (Ugni molinae Turcz): Influence of temperature and vacuum on drying kinetics. Food and Bioprocess Technology, 6(4), 919-930. https://doi.org/10.1007/s11947-011-0758-5
  2. Ayoubi, A., Sedaghat, N., & Kashaninejad, M. (2015). Study the effect of different pretreatments on thin layer drying of grape and the color of obtained raisin. Research and Innovation in Food Science and Technology, 4(1), 1-18. https://doi.org/10.22101/JRIFST.2015.05.10.411
  3. Bai, J. W., Sun, D. W., Xiao, H. W., Mujumdar, A., & Gao, Z. J. (2013). Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies 20, 230-237. https://doi.org/10.1016/j.ifset.2013.08.011
  4. Bai, J. W., Gao, Z. J., Xiao, H. W., Wang, X. T., & Zhang, Q. (2013). Polyphenol oxidase inactivation and vitamin C degradation kinetics of F uji apple quarters by high humidity air impingement blanching. International Journal of Food Science & Technology, 48(6), 1135-1141. https://doi.org/10.1111/j.1365-2621.2012.03193.x
  5. Crank, J. (1979). The mathematics of diffusion. Oxford university press.
  6. Dai, J. W., Wang, J., Yang, S. L., Wen, M. D., Yin, P. F., Qin, W., Liu, Y. W., Liu, Q., Liu, S. X., & Xu, L. J. (2020). High humidity air-impingement blanching (HHAIB) improves drying characteristics and quality of ground-cover chrysanthemum heads. International Journal of Food Engineering, 16(12). https://doi.org/10.1515/ijfe-2020-0121
  7. De Roeck, A., Sila, D. N., Duvetter, T., Van Loey, A., & Hendrickx, M. (2008). Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chemistry, 107(3), 1225-1235. https://doi.org/10.1016/j.foodchem.2007.09.076
  8. Dehbooreh, R., & Esmaiili, M. (2009). Evaluation of Microwave and Convective Finish Drying Parameters and Drying Effects on Color of Dried Grapes. Iranian Food Science and Technology Research Journal, 5(2). https://doi.org/10.1590/1678-4324-2022210614
  9. Deng, L. Z., Mujumdar, A., Yang, X. H., Wang, J., Zhang, Q., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2018). High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chemistry, 261, 292-300. https://doi.org/10.1016/j.foodchem.2018.04.062
  10. Dev, S., Padmini, T., Adedeji, A., Gariépy, Y., & Raghavan, G. (2008). A comparative study on the effect of chemical, microwave, and pulsed electric pretreatments on convective drying and quality of raisins. Drying Technology, 26(10), 1238-1243. https://doi.org/10.1080/07373930802307167
  11. Di Matteo, M., Cinquanta, L., Galiero, G., & Crescitelli, S. (2000). Effect of a novel physical pretreatment process on the drying kinetics of seedless grapes. Journal of Food Engineering, 46(2), 83-89. https://doi.org/10.1016/S0260-8774(00)00071-6
  12. Doulati Baneh, H. (2016). the Grapevine Comperhensive Management of Growling, Production and Processing: University of Kurdistan Press.
  13. Earle, R. L. (2013). Unit operations in food processing. Elsevier.
  14. Gao, Z., Xiao, H., Liu, B., & Yang, W. (2008). A no nutritional loss and non-fried sweet potato chips processing method. China Patent No. ZL200810116897
  15. Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73(3), 285-290. https://doi.org/10.1016/S0308-8146(00)00298-3
  16. Kondjoyan, A., Chevolleau, S., Grève, E., Gatellier, P., Santé-Lhoutellier, V., Bruel, S., Touzet, C., Portanguen, S., & Debrauwer, L. (2010). Formation of heterocyclic amines in slices of Longissimus thoracis beef muscle subjected to jets of superheated steam. Food Chemistry, 119(1), 19-26. https://doi.org/10.1016/j.foodchem.2009.02.081
  17. Liu, Z. L., Bai, J. W., Yang, W. X., Wang, J., Deng, L. Z., Yu, X. L., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2019). Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Drying Technology. https://doi.org/10.1080/07373937.2018.1494185
  18. Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3
  19. Martin, H. (1977). Heat and mass transfer between impinging gas jets and solid surfaces in. Advances in heat transfer (vol. 13). (pp. 1-60) Elsevier.
  20. Moelants, K. R., Cardinaels, R., Van Buggenhout, S., Van Loey, A. M., Moldenaers, P., & Hendrickx, M. E. (2014). A review on the relationships between processing, food structure, and rheological properties of plant‐tissue‐based food suspensions. Comprehensive Reviews in Food Science and Food Safety, 13(3), 241-260. https://doi.org/10.1111/1541-4337.12059
  21. Olsson, E., Trägårdh, A., & Ahrné, L. (2005). Effect of near‐infrared radiation and jet impingement heat transfer on crust formation of bread. Journal of Food Science, 70(8), e484-e491. https://doi.org/10.1111/j.1365-2621.2005.tb11519.x
  22. Rico, D., Martín-Diana, A. B., Barry-Ryan, C., Frías, J. M., Henehan, G. T., & Barat, J. M. (2008). Optimisation of steamer jet-injection to extend the shelflife of fresh-cut lettuce. Postharvest Biology and Technology, 48(3), 431-442. https://doi.org/10.1016/j.postharvbio.2007.09.013
  23. Sarkar, A., & Singh, R. P. (2004). Air impingement technology for food processing: visualization studies. LWT-Food Science and Technology, 37(8), 873-879. https://doi.org/10.1016/j.lwt.2004.04.005
  24. Schabel, W., & Martin, H. (2010). G10 Impinging jet flow heat transfer in. VDI Heat Atlas.
  25. Sui, M., Gao, Z., Ni, Z., & Fang, X. (2008). Study on relationship of temperature and puffing in roasting process of Peking duck with air impingement. Journal of Food Science and Technology (China), 10, 68-70.
  26. Swati, K., & Ashim, D. (2014). Modeling Mechanical Property Changes During Heating of Carrot Tissue -A Microscale Approach. COMSOL Conference. Boston.
  27. Thorat, I. D., Mohapatra, D., Sutar, R., Kapdi, S., & Jagtap, D. D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinale) slices. Food and Bioprocess Technology, 5(4), 1379-1383. https://doi.org/10.1007/s11947-010-0429-y
  28. Wang, H., Xiao, H. W., Liu, Z. L., Yu, X. L., Zhu, G. F., & Zheng, Z. (2019). Effect of drying and high-humidity hot air impingement blanching (HHAIB) parameters on drying characteristics and quality of apple slices. Pages 1. 2019 ASABE Annual International Meeting: American Society of Agricultural and Biological Engineers. https://doi:10.13031/aim.201900524
  29. Wang, J., Fang, X. M., Mujumdar, A., Qian, J. Y., Zhang, Q., Yang, X. H., Liu, Y. H., Gao, Z. J., & Xiao, H. W. (2017a). Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum). Food Chemistry, 220, 145-152. https://doi.org/10.1016/j.foodchem.2016.09.200
  30. Wang, J., Mu, W. S., Fang, X. M., Mujumdar, A., Yang, X. H., Xue, L. Y., Xie, L., Xiao, H. W., Gao, Z. J., & Zhang, Q. (2017b). Pulsed vacuum drying of Thompson seedless grape: Effects of berry ripeness on physicochemical properties and drying characteristic. Food and Bioproducts Processing, 106, 117-126. https://doi.org/10.1016/j.fbp.2017.09.003
  31. Xiao, H. W., Pang, C. L., Wang, L. H., Bai, J. W., Yang, W. X., & Gao, Z. J. (2010). Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105(2), 233-240. https://doi.org/10.1016/j.biosystemseng.2009.11.001
  32. Xiao, H. W., & Mujumdar, A. (2014). Impingement Drying: Application and Future Trends.
  33. Xiao, H. W., Yao, X. D., Lin, H., Yang, W. X., Meng, J. S., & Gao, Z. J. (2012). Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. Journal of Food Process Engineering, 35(3), 370-390. https://doi.org/10.1111/j.1745-4530.2010.00594.x
  34. Zielinska, S., Cybulska, J., Pieczywek, P., Zdunek, A., Kurzyna-Szklarek, M., Liu, Z. L., Staniszewska, I., Pan, Z., Xiao, H. W., & Zielinska, M. (2022). The effect of high humidity hot air impingement blanching on the changes in molecular and rheological characteristics of pectin fractions extracted from okra pods. Food Hydrocolloids, 123, 107199. https://doi.org/10.1016/j.foodhyd.2021.107199
CAPTCHA Image