با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک بیوسیستم، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

توسعه ابزارهای اندازه‌گیری سریع برای ارزیابی خصوصیات کیفی نیشکر شامل غلظت قند و محتوای رطوبت بدون نیاز به استخراج عصاره از ساقه از جمله ضرورت‌های فناوری در کشاورزی و صنعت این محصول می‌باشد. در این پژوهش، یک پراب دی‌الکتریک با قابلیت توسعه و به‌کارگیری به شکل قابل‌حمل توسعه داده شد و عملکرد آن برای اندازه‌گیری غلظت قند (بر حسب درجه بریکس) و محتوای رطوبت روی نمونه‌های ساقه از هفت رقم نیشکر در بازه فرکانسی MHz 150-0 مورد ارزیابی قرار گرفت. همچنین به‌منظور مقایسه و بهبود دقت اندازه‌گیری غلظت قند،‌ توانایی روش طیف‌سنجی مرئی- فروسرخ نزدیک موج کوتاه (Vis-SWNIR) در محدوده طول موج 1100-400 نانومتر بررسی شد. از مدل‌های رگرسیون حداقل مربعات جزئی (PLS) و شبکه‌های عصبی مصنوعی (ANN) برای پیش‌بینی درجه بریکس و محتوای رطوبت نمونه‌ها استفاده شد. علاوه‌بر ارزیابی مستقل عملکرد هر دو روش در بهترین حالت با 1.14= RMSEP و 1.88= RMSEP برای اندازه‌گیری بریکس به‌ترتیب با روش‌های طیف‌سنجی Vis-SWNIR و دی‌الکتریک، روش‌های تلفیق داده (سطح پایین و سطح متوسط) برای استفاده از اثر هم‌افزایی اطلاعات به‌دست‌آمده از دو روش به‌کار گرفته شد. در پیش‌بینی بریکس، بهترین نتیجه مربوط به روش تلفیق داده سطح پایین با 0.94 = R2p و 0.74=RMSEP بود. همچنین روش تلفیق داده سطح متوسط با 0.89 = R2p و 0.93= RMSEP بهترین نتیجه را در پیش‌گویی مقادیر محتوای رطوبت داشت. بنابراین، رویکرد تلفیق داده به‌طور موثر دقت پیش‌بینی مدل‌های توصیف‌کننده را بهبود بخشید و می‌تواند به‌عنوان روش و ابزاری قابل‌اعتماد در اندازه‌گیری خصوصیات کیفی نیشکر مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Aldeza, C. G., Botella, M., Toldr, P., & Fito, P. (2010). Low frequency dielectric spectrum to determine pork meat quality. Innovative Food Science and Emerging Technologies, 11(2), 376-386. https://doi.org/10.1016/j.ifset.2010.01.011
  2. Anonymous. (2018). Agriculture– Iran– Statistics: Agriculture Agricultural census. 2016-2017, 1, 47-48. (in Persian).
  3. Augusto, P., & Filho, C. (2009). Rapid determination of sucrose in chocolate mass using near infrared Analytica Chimica Acta, 631, 206-211. https://doi.org/10.1016/J.ACA.2008.10.049
  4. Bahrami, M. E., Honarvar, M., Ansari, K., & Jamshidi, B. (2020). Measurement of quality parameters of sugarbeet juices using near-infrared spectroscopy and chemometrics. Journal of Food Engineering, 271, 109775. https://doi.org/10.1016/j.jfoodeng.2019.109775
  5. Bagherpour, H., Minaei, H., Abdollahian Noghabi, M., & Khorasani Fardvani, M. E. (2015). Non-destructive determination of sugar content in root beet by near infrared spectroscopy (NIRS). Food Science and Technology, 46(12), 219-228. (in Persian with English abstract).
  6. Biancolillo, A., Bucci, R., & Marini, F. (2014). Data-fusion for multiplatform characterization of an Italian craft beer aimed at its authentication. Analytica Chimica Acta, 820, 23-31. https://doi.org/10.1016/j.aca.2014.02.024
  7. Blakey, R. T., & Morales-Partera, A. M. (2016). Microwave dielectric spectroscopy– A versatile methodology for online, non-destructive food analysis, monitoring and process control. Engineering in Agriculture, Environment and Food, 9(3), 264-273. https://doi.org/10.1016/j.eaef.2016.02.001
  8. Bobelyn, E., Serban, A. S., Nicu, M., Lammertyn, J., Nicoli, B. M., & Saeys, W. (2010). Postharvest quality predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance. Postharvest Biology and Technology, 55(3), 133-143. https://doi.org/10.1016/j.postharvbio.2009.09.006
  9. Borras, E., Ferre, J., Boque, R., Mestres, M., Acena, L., & Busto, O. (2015). Data fusion methodologies for food and beverage authentication and quality assessment–A Review. Analytica Chimica Acta, 891(3), 1-14. https://doi.org/10.1016/j.aca.2015.04.042
  10. Castanedo, F. (2013). A Review of Data Fusion Techniques. Hindawi Publishing Corporation, 2013, 1-19.
  11. Chiatrakul, J., Terdwongworakul, A., Phuangsombut, K., & Phuangsombut, A. (2022). Improved evaluation of commercial cane sugar content in sugarcane stalk using near infrared hyperspectral imaging and stalk axis rotation technique. Biosystems Engineering, 223, 161-173. https://doi.org/10.1016/j.biosystemseng.2022.08.019
  12. Choi, J. H., Chen, P. A., Lee, B., & Yim, S. H. (2017). Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears. Scientia Horticulturae, 220(16), 147-153. https://doi.org/10.1016/j.scienta.2017.03.050
  13. Cole, M. R., Eggleston, G., Gilbert, A., & Chung, Y. J. (2016). Development of an analytical method to measure insoluble and soluble starch in sugarcane and sweet sorghum products. Food Chemistry, 190, 50-59. https://doi.org/10.1016/j.foodchem.2015.05.049
  14. FAO. (2021). Food and Agricultural Organization of United Nations. Statistical Yearbook 2021. Rome. https://doi.org/10.4060,cb4477en
  15. Fazayeli, A., Kamgar, S., Nassiri, S. M., Fazayeli, H., & Guardia, M. D. L. (2019). Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 6(4), 479-486. https://doi.org/10.1016/j.inpa.2019.02.002
  16. Fu, X., Ying, Y., Lu, H., Xu, H., & Yu, H. (2007). FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sensing and Instrumentation for Food Quality and Safety, 1, 29-35. https://doi.org/10.1007/s11694-007-9004-2
  17. Gaci, ,Garcia, S. M.,  Abdelghafour, F., Adrian, J., Maupas, F., & Roger, J. M. (2022). Assessing the potential of a handheld visible-near infrared microspectrometer for sugar beet phenotyping. Journal of Near Infrared Spectroscopy, 30(3), 122-129. https://doi.org/10.1177/09670335221083448
  18. Garcia, A., Torres, J. L., De Blas, M., De Francisco, A., & Illanes, R. (2004). Dielectric characteristics of grape juice and wine. Journal of Biosystems Engineering, 88(3), 343-349. https://doi.org/10.1016/j.biosystemseng.2004.04.008
  19. Ghasemi-Varnamkhasti, M., Ghatreh-Samani, N., Naderi-Boldaji, M., Forina, M., & Bonyadian, M. (2017). Development of two dielectric sensors coupled with computational techniques for detecting milk adulteration. Computers and Electronics in Agriculture, 140, 266-278. https://doi.org/10.1016/j.compag.2017.06.005
  20. Goodarzi, N., Movahhed, S., Shakouri, M. J., & Ahmadi Chenarbon, H. (2022). Feasibility of Visible/Near Infrared (Vis/NIR) Spectroscopy capability in classification of lemon samples during storage period by PCA, LDA and SVM identification methods. Iranian Journal of Food Science and Technology, 18, 335-352. https://doi.org/10.52547/fsct.18.120.26
  21. Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2007). Dielectric properties of honeydew melons & correlation with quality. Microwave Power & Electromagnetic Energy, 41(2), 4454. https://doi.org/10.1080/08327823.2006.11688556
  22. Guo, W., Zhu, X., Liu, Y., & Zhuang, H. (2010). Sugar and water contents of honey with dielectric property sensing. Journal of Food Engineering, 97(2), 275-281. https://doi.org/10.1016/j.jfoodeng.2009.10.024
  23. Heise, H. M., & Winzen, R. (2006). Chemometrics in Near-Infrared Spectroscopy. In: Siesler, H. W., Ozaki, Y., Kawata, S. and Heise, H. M. (Eds.) Near-Infrared Spectroscopy: Principles, Instruments, Applications. 3rd Reprint. WileyVCH. Germany.
  24. Hoog, N. A., Olthuis, W., Mayer, M. J. J., Yntema, D., Miedema, H., & van den Berg, A. (2012). Online fingerprinting of fluids using coaxial stub resonator technology. Sensors and Actuators, B: Chemical, 163(1), 90-96. https://doi.org/10.1016/j.snb.2012.01.012
  25. Jamshidi, B., Minaei, S., Mohajerani, E., & Ghassemian, H. (2012). Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Computers and Electronics in Agriculture, 85, 64-69. https://doi.org/10.1016/j.compag.2012.03.008
  26. Jamshidi, B., Minaei, S., Mohajerani, E., & Ghassemian, H. (2014). Effect of spectral pre-processing methods on non-destructive quality assessment of oranges using NIRS. Journal of Agricultural Engineering Research, 167, 264-271. (in Persian with English abstract). https://doi.org/10.22092/JAER.2014.100188
  27. Korel, F., Luzuriaga, D., & Balaban, M. O. (2001). Objective quality assessment of raw tilapia (Oreochromis niloticus) fillets using electronic nose and machine vision. Journal of Food Science, 66(7), 1018-1024.
  28. Lal Mathur, R. B. (1990). Handbook of cane sugar technology. Oxford & Ibh Publishing Co. India. pp:11.
  29. Langford, V. S., McKinley, A. J., & Quickenden, T. I. (2001). Temperature Dependence of the Visible-Near-Infrared Absorption Spectrum of Liquid Water. Journal of Physical Chemistry A, 105, 8916-8921. https://doi.org/10.1021/jp010093m
  30. Luzuriaga, D. A. (1999). Application of computer vision and electronic nose technologies for quality assessment of color and odor of shrimp and salmon. PhD dissertation, Department of Food Science and Technology, University of Florida, Gainesville, FL.
  31. Magalhaes, P. S. G., & Cerri, D. G. P. (2007). Yield monitoring of sugar cane. Biosystems Engineering, 96(1), 1-6. https://doi.org/10.1016/j.biosystemseng.2006.10.002
  32. Magwaza, L. S., Opara, U. L., Terry, L. A., Landahl, S., Cronje, P. J. R., Nieuwoudt, H. H., Hanssens, A., Saeys, W., & Nicolaï, B. M. (2013). Evaluation of Fourier transform-NIR spectroscopy for integrated external and internal quality assessment of Valencia oranges. Journal of Food Composition and Analysis, 31(1), 144-154. https://doi.org/10.1016/j.jfca.2013.05.007
  33. Mehrotra, R., & Siesler, H. W. (2003). Application of mid infrared/near infrared spectroscopy in sugar industry. Applied Spectroscopy Reviews, 38(3), 307-354. https://doi.org/10.1081/ASR-120024392
  34. Mireei, S. A., Mohtasebi, S. S., Masoodi, R., Rafiei, S. H., & Arabanian, A. S. (2010). Application of FT-NIR spectroscopy in nondestructive maturity determination of Shahani date fruit. Iranian Journal of Biosystem Engineering, 41(2), 113-120. (in Persian with English abstract).
  35. Mireei, A., Bagheri, R., Sadeghi, M., & Shahraki, A. (2016). Developing an electronic portable device based on dielectric power spectroscopy for non-destructive prediction of date moisture content. Sensors and Actuators A: Physical, 247, 289-297. https://doi.org/10.1016/j.sna.2016.06.012
  36. Moomkesh, S., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2017). Non-destructive prediction of quality parameters of sweet lemon (Citrus limetta) by Vis-SWNIR spectroscopy. Iranian Journal of Biosystems Engineering, 47(4), 603-613. (in Persian with English abstract). https://doi.org/10.22059/IJBSE.2017.61991
  37. Naderi-Boldaji, M., Fazelian-Dehkordi, M., Mireei, A., & Ghasemi-Varnamkhasti, M. (2015). Dielectric power spectroscopy as a potential technique for the non-destructive measurement of sugar concentration in Journal of Biosystems Engineering, 140, 1-10. https://doi.org/10.1016/j.biosystemseng.2015.09.003
  38. Naderi-Boldaji, M., Mishra, P., Ahmadpour-Samani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., & Izadi, Z. (2018). Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup. Measurement, 127, 518-524. https://doi.org/10.1016/j.measurement.2018.06.015
  39. Nawi, M. N., Chen, G., Jensen, T., & Mehdizadeh, S. A. (2013). Prediction and classification of sugar content of sugarcane based on skin scanning using visible and shortwave near infrared. Biosystems Engineering, 115(2), 151-161. https://doi.org/10.1016/j.biosystemseng.2013.03.005
  40. Nawi, N. M., Jensen, T., & Chen, G. (2012). The application of spectroscopic methods to predict sugarcane quality based on stalk cross-sectional scanning. Journal of American Society of Sugar Cane Technologists, 32, 16-27.
  41. Nelson, S. O. (2004). Agricultural applications of dielectric spectroscopy. Journal of Microwave Power and Electromagnetic Energy, 39(2), 75-85. https://doi.org/10.1080/08327823.2004.11688510
  42. Pan, L., Zhu, Q., Lu, R., & McGrath, J. M. (2015). Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy. Journal of Agriculture and Food Chemistry, 167(15), 264-271. https://doi.org/10.1016/j.foodchem.2014.06.117
  43. Pandiselvam, R., Prithviraj, V., Manikantan, M. R., Kothakota, A., Rusu, A. V., Trif, M., & Khaneghah, M. (2022). Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review. Frontiers in Nutrition, 9, 973457. https://doi.org/10.3389/fnut.2022.973457
  44. Peirs, A., Lam mertyn, J., Ooms, K., & Nicolaı, B. M. (2001). Prediction of the optimal picking date of different apple cultivars by means of VIS: NIR-spectroscopy. Postharvest Biology and Technology, 21(2), 189-199. https://doi.org/10.1016/S0925-5214(00)00145-9
  45. Rudnitskaya, A., Kirsanov, D., Legin, A., Beullens, K., Lammertyn, J., & Nicolaï, B. M. (2006). Analysis of apples varieties– Comparison of electronic tongue with different analytical techniques. Sensors and Actuators B: Chemical, 116(1-2), 23-28. https://doi.org/10.1016/j.snb.2005.11.069
  46. Sanaeifar, A., Jafari, A., & Golmakani, M. T. (2018). Fusion of dielectric spectroscopy and computer vision for quality characterization of olive oil during storage. Computers and Electronics in Agriculture, 145, 142-152. https://doi.org/10.1016/j.compag.2017.12.035
  47. Sirisomboon, P. (2018). NIR spectroscopy for quality evaluation of fruits and vegetables. Materials Today: Proceedings, 5(10), 22481-22486. https://doi.org/10.1016/j.matpr.2018.06.619
  48. Skierucha, W., Wilczek, A., & Szypowska, A. (2012). Dielectric spectroscopy in agrophysics. International Agrophysics, 26, 187-197. https://doi.org/10.2478/v10247-012-0027-5
  49. Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105(4), 625-631. https://doi.org/10.1016/j.jfoodeng.2011.03.032
  50. Xiaobo, Z., Jiewen, Z., Xingyi, H., & Yanxiao, L. (2007). Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of 'Fuji' apple based on different PLS models. Chemometrics and Intelligent Laboratory Systems, 87(1), 43-51. https://doi.org/10.1016/j.chemolab.2006.09.003
CAPTCHA Image