با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی بیو‌سیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 بخش مهندسی بیوسیستم و مرکز پژوهشی فرآوری آبزیان، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

3 بخش مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

4 بخش مهندسی گاز، دانشکده مهندسی شیمی نفت و گاز، دانشگاه شیراز، شیراز، ایران

چکیده

روند خشک‌کردن میگوی پرورشی (Litopenaeus vannamei) پوست‌گیری‌شده در یک خشک‌کن هوای گرم همرفتی برای تعیین فراسنجه‌های چروکیدگی، سینتیک خشک‌شدن، جرم حجمی و ضریب انتشار مؤثر رطوبت مورد مطالعه قرار گرفت. بدین منظور نمونه‌های میگو به شکل ورقه در سه سطح دمای 40، 50 و 60 درجه سلسیوس با سرعت ثابت هوای 1.5 متر بر ثانیه در دستگاه خشک‌کن ساخته‌شده، خشک شدند و وزن و حجم نمونه‌ها طی فرآیند خشک‌شدن، برای مدل‌سازی مورد استفاده قرار گرفتند. از بین مدل‌های تجربی در نظر گرفته‌شده برای چروکیدگی و سینتیک خشک‌کردن، مدل خطی بهترین مدل برای بیان تغییرات چروکیدگی در مقابل تغییرات نسبت رطوبت و مدل توزیع ویبال به‌عنوان بهترین مدل برای بیان تغییرات نسبت رطوبت-زمان انتخاب شد. از یک مدل تجربی وابسته به رطوبت برای بیان تغییرات جرم حجمی ظاهری میگو استفاده شد که با تخمین ضرایب آن، دامنه 3-kg m 1117-1050 به‌دست آمد. افزون بر آن برای بیان اثر محتوای رطوبت و دما بر ضریب انتشار مؤثر رطوبت میگو یک رابطه آرنیوسی استخراج شد. بر اساس نتایج، تغییرات ضریب انتشار مؤثر رطوبت میگو در دامنهm2 s-1  9-10×0.08 تا m2 s-1 9-10×7.39 به‌دست آمد. اثر بسط تعداد جملات قانون دوم فیک بر تغییرات نسبت رطوبت برای معادله ضریب انتشار مؤثر، مورد مطالعه قرار گرفت و مشخص شد افزایش تعداد‌ جملات بیشتر از 100 جمله اثر قابل‌ملاحظه‌ای در دقت خروجی مدل ندارد و بر همین اساس تعداد صد جمله برای تخمین ضریب انتشار رطوبت توصیه می­‌شود. همچنین برای تعیین این ضریب، اثر چروکیدگی به‌عنوان عامل تاثیرگذار باید لحاظ گردد.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Achanta, S., Okos, M. R., Cushman, J. H., & Kessler, D. P. (1997). Moisture transport in shrinking gels during saturated drying. Association of International Chemical Engineers Journal, 43(8), 2112-2122. https://doi.org/10.1002/aic.690430818
  2. Akonor, P. T., Ofori, H., Dziedzoave, N. T., & Kortei, N. K. (2016). Drying characteristics and physical and nutritional properties of shrimp meat as affected by different traditional drying techniques. International Journal of Food Science, 2016. 7879097. https://doi.org/10.1155/2016/7879097
  3. Al-Hilphy, A., Al-Mtury, A., Al‐Iessa, S., Gavahian, M., Al‐Shatty, S., Jassim, M., & Mohusen, Z. (2022). The pilot-scale rotary infrared dryer of shrimp (Metapenaeus affinis): mathematical modeling and effect on the chemical, color components, and sensory attributes. Journal of Food Process Engineering, 45(6). https://doi.org/10.1111/jfpe.13945
  4. Amankwah, E. A., Dzisi, K. A., Staten, G., & Boxtel, A. J. B. (2018). Moisture Dependent Diffusion and Shrinkage in Yam during Drying. International Journal of Food Engineering. https://doi.org/1515/ijfe-2017-0394
  5. Anabel, F., Celia, R., Germán, M., & Rosa, R. (2018). Determination of effective moisture diffusivity and thermodynamic properties variation of regional wastes under different atmospheres. Case Studies in Thermal Engineering, 12(2018), 248-257. https://doi.org/10.1016/j.csite.2018.04.015
  6. Aniesrani Delfiya, D. S., Murali, S., Alfiya, P. V., & Samuel, M. P. (2020). Drying characteristics of shrimp (Metapenaeus dobsoni) in electrical dryer. Pantnagar Journal of Research, 18(3), 281-285.
  7. Anonymous. (2020). Iran Fisheries Organization statistical yearbook, 2014-2020. Iran Fisheries Organization Tehran. Iran. (in Persian).
  8. Azimi, M. J. (2016). Cabinet Drying, Freeze Drying and Sun Drying methods of shrimp and study of its Physicochemical and Microbial. M.Sc. dissertation. University of Shiraz. (in Persian).
  9. Azzouz, S., Guizani, A., Jomma, W., & Belghith, A. (2002). Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55(4), 323-330. https://doi.org/10.1016/S0260-8774(02)00109-7
  10. Bai, J., Wang, J., Xiao, H., Ju, H., Liu, Y., & Gao, Z. (2013). Weibull distribution for modeling drying of grapes and its application. Transactions of the Chinese Society of Agricultural Engineering, 29(16), 278-285.
  11. Blikra, M. , Skipnes, D., & Feyissa, A. H. (2019). Model for heat and mass transport during cooking of cod loin in a convection oven. Food Control, 102, 29-37. https://doi.org/10.1016/j.foodcont.2019.03.001
  12. Buzrul, S. (2022). Reassessment of Thin-Layer Drying Models for Foods: A Critical Short Communication. Processes, 10(1), 118. https://doi.org/10.3390/pr10010118
  13. Ceylan, İ. (2008). Determination of drying characteristics of timber by Using artificial neural networks and mathematical models. Drying Technology, 26(12), 1469-1476. https://doi.org/10.1080/07373930802412132
  14. Clemente, G., Bon, J., Sanjuan, N., & Mulet, A. (2009). Determination of Shrinkage Function for Pork Meat Drying. Drying Technology, 27(1), 143-148. https://doi.org/10.1080/07373930802566051
  15. Corzo, O., & Bracho, N. (2008). Application of Weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. Lwt- Food Science and Technology, 41(6), 1108-1115. https://doi.org/10.1016/j.lwt.2007.06.018
  16. Corzo, O., Bracho, N., Pereira, A. & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. Lwt- Food Science and Technology, 41(10), 2023-2028. https://doi.org/10.1016/j.lwt.2008.01.002
  17. Costa, M. V., Silva, A. K. N., Rodrigues, P. R., Silva, L. H. M., & Cruz Rodrigues, A. M. (2018). Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments. Food Science and Technology, 38(4), 612-618. https://doi.org/10.1590/fst.31517
  18. Dai, J. W., Wang, J., Ren, L., Liu, Y. W., & Zhang, L. H. (2018). Mathematical model of potato slices under process-based temperature and humidity integration control of tilted tray air impingement drying. In: Proceedings of 7th International Conference on Energy and Environmental Protection (ICEEP 2018). 14-15 July. Shenzhen, China. pp. 50-56. https://doi.org/10.2991/iceep-18.2018.9
  19. Doymaz, İ. (2008). Convective drying kinetics of strawberry. Chemical Engineering and Processing: Process Intensification, 47(5), 914-919. https://doi.org/10.1016/j.cep.2007.02.003
  20. Erşan, A. C., & Tugrul, N. (2020). The drying kinetics and characteristics of Shrimp dried by conventional methods. Chemical Industry and Chemical Engineering Quarterly, 27(4), 319-328. https://doi.org/10.2298/ciceq201114050e
  21. Falade, K. O., & Solademi, O. J. (2010). Modelling of air drying of fresh and blanched sweet potato slices. International Journal of Food Science & Technology, 45(2), 278-288. https://doi.org/10.1111/j.1365-2621.2009.02133.x
  22. Farhang, A., Hosainpour, A., Darvishi, H., & Nargesi, F. (2011). Shrimp drying characterizes undergoing microwave treatment. Journal of Agricultural Science, 3(2), 157-164. https://doi.org/10.5539/jas.v3n2p157
  23. Gaikwad, P. S., Sunil, C. K., Negi, A., & Pare, A. (2022). Effect of microwave assisted hot-air drying temperatures on drying kinetics of dried black gram papad (Indian snack food) Drying characteristics of black gram papad. Applied Food Research, 2(2022). https://doi.org/10.1016/j.afres.2022.100144
  24. Gely, M. C., & Santalla, E. M. (2007). Moisture diffusivity in quinoa (Chenopodium quinoa) seeds: Effect of air temperature and initial moisture content of seeds. Journal of Food Engineering, 78(3), 1029-1033. https://doi.org/10.1016/j.jfoodeng.2005.12.015
  25. Giovanelli, G., Zanoni, V., Lavelli, V., & Nani, R. (2002). Water sorption, drying and antioxidant properties of tomato products. Journal of Food Engineering, 52(2), 135-141. https://doi.org/10.1016/S0260-8774(01)00095-4
  26. Guiné, R. d. P. F. (2006). Influence of drying method on density and porosity of pears. Food and Bioproducts Processing, 84(3), 179-185. https://doi.org/10.1205/fbp.05106
  27. Hashemi, G., Mowla, D., & Kazemeini, M. (2009). Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal of Food Engineering, 92(3), 331-338. https://doi.org/10.1016/j.jfoodeng.2008.12.004
  28. Hatamipour, M. S., & Mowla, D. (2002). Shrinkage of carrots during drying in an inert medium fluidized bed. Journal of Food Engineering, 55(3), 247-252. https://doi.org/10.1016/S0260-8774(02)00082-1
  29. Kaminski, E., Szarycz, M., & Janowicz, L. (1996) The kinetics of drying sliced apples in the conditions of natural convection. In: Proceedings of 7th Seminar on Properties of water in foods. Warsaw Agricultural University. Warsaw. Poland. pp. 24-34.
  30. Kassama, L. S., & Ngadi, M. O. (2004). Pore development in chicken meat during deep-fat frying. LWT Food Science and Technology, 37(8), 841-847. https://doi.org/10.1016/j.lwt.2004.03.010
  31. Kassama, L. S., & Ngadi, M. O. (2016). Shrinkage and density change of de-boned chicken breast during deep-fat frying. Food and Nutrition Sciences, 2016(7), 895-905. https://doi.org/10.4236/fns.2016.710089
  32. Komolafe, C. A., Oluwaleye, I. O., Adejumo, A. O. D., Waheed, M. A., & Kuye, S. I. (2018). Determination of moisture diffusivity and activation energy in the convective drying of fish. International Journal of Heat and Technology, 36(4), 1262-1267. https://doi.org/10.18280/ijht.360414
  33. Ling, J., Teng, Z., & Lin, H. (2018). Improved method for prediction of milled rice moisture content based on Weibull distribution. International Journal of Agricultural & Biological Engineering, 11(3), 159-165. https://doi.org/10.25165/j.ijabe.20181103.3429
  34. Manjeet, S. C. (1984). Evaluation of selected mathematical models for describing Thin-Layer drying of In-Shell Pecans. Transactions of the ASAE, 27(2), 610-615. https://doi.org/10.13031/2013.32837
  35. Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61(3), 373-386. https://doi.org/10.1016/S0260-8774(03)00144-4
  36. Mohebi, M., Akbarzadeh, M. R., Shahidi, F., & Porshahabi, M. R. (2007). Investigation of the possibility of using the visual machine and artificial neural network in predicting the moisture content of dried shrimp. In proceeding of 4th Iranian Machine Vision and Image Processing Conference. 14-15 Feb. Ferdowsi university of Mashhad. Mashhad. Iran. (in Persian).
  37. Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technology, 18(1-2), 279-294. https://doi.org/10.1080/07373930008917704
  38. Mulet, A., Garcia Reverter, J., Bon, J., & Berna, A. (2000). Effect of shape on potato and cauliflower shrinkage during drying. Drying Technology, 18(6), 1201-1219. https://doi.org/10.1080/07373930008917772
  39. Murali, S., Aniesrani Delfiya, D. S., Sathish Kumar, K., Kumar, L. R. G., Ezhil Nilavan, S., Amulya, P. R., Krishnan, V. S., Alfiya P. V., & Samuel M. P. (2021) Mathematical modeling of drying kinetics and quality characteristics of shrimps dried under a Solar–LPG hybrid dryer. Journal of Aquatic Food Product Technology, 30(5), 561-578. https://doi.org/10.1080/10498850.2021.1901814
  40. Nguyen, M. P., Ngo, T. T., & Le, T. D. (2019). Experimental and numerical investigation of transport phenomena and kinetics for convective shrimp drying. Case Studies in Thermal Engineering, 14(2019), 100465. https://doi.org/10.1016/j.csite.2019.100465
  41. Niamnuy, C., Devahastin, S., Soponronnarit, S., & Raghavan, V. G. S. (2008). Modeling coupled transport phenomena and mechanical deformation of shrimp during drying in a jet spouted bed dryer. Chemical Engineering Science, 63(22), 5503-5512. https://doi.org/10.1016/j.ces.2008.07.031
  42. Ochoa, M. R., Kesseler, A. G., Pirone, B. N., Marquez, C. A., & DeMichelis, A. (2002). Volume and area shrinkage of whole sour cherry fruits (Prunus Cerasus) during dehydration. Drying Technology, 20(1), 147-156. https://doi.org/10.1081/DRT-120001371
  43. Pabis, S., Jayas, D., & Cenkowski, S. (1998). Grain drying: Theory and practice. New York, United States: John Wiley and Sons.
  44. Park, K. J. (1998). Diffusional model with and without shrinkage during salted fish muscle drying. Drying Technology, 16(3-5), 889-905. https://doi.org/10.1080/07373939808917443
  45. Porciuncula, B. D. A., Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2013). Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. Journal of Food Engineering, 119(3), 490-496. https://doi.org/10.1016/j.jfoodeng.2013.06.011
  46. Queiroz, M. R., & Nebra, S. A. (2001). Theoretical and experimental analysis of the drying kinetics of bananas. Journal of Food Engineering, 47(2), 127-132. https://doi.org/10.1016/S0260-8774(00)00108-4
  47. Radhakrishnan, S. (1997). Measurement of thermal properties of seafood. Sc. dissertation. Virginia Polytechnic Institute and State University. Blacksburg, Virginia.
  48. Reyes, A., Alvarez, P. I., & Marquardt, F. H. (2002). Drying of carrots in a fluidized bed. I. Effects of drying conditions and modelling. Drying Technology, 20(7), 1463-1483. https://doi.org/10.1081/DRT-120005862
  49. Ruiz-López, I. I., & García-Alvarado, M. A. (2007). Analytical solution for food-drying kinetics considering shrinkage and variable diffusivity. Journal of Food Engineering, 79(1), 208-216. https://doi.org/10.1016/j.jfoodeng.2006.01.051
  50. Shafiur Rahman, M., & Driscoll, R. H. (1994). Density of fresh and frozen seafood. Journal of Food Process Engineering, 17(2), 121-140. https://doi.org/10.1111/j.1745-4530.1994.tb00331.x
  51. Sharaf-Elden, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1984). A model for ear corn drying. Transactions of the ASAE, 23(5), 1261-1265. https://doi.org/10.13031/2013.34757
  52. Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2007). A mathematical model for low-pressure superheated steam drying of a biomaterial. Chemical Engineering and Processing: Process Intensification, 46(7), 675-683. https://doi.org/10.1016/j.cep.2006.09.002
  53. Tirawanichakul, S., Na Phatthalung, W., & Tirawanichakul, Y. (2011). Drying Strategy of Shrimp using Hot Air Convection and Hybrid Infrared Radiation/Hot Air Convection. Walailak Journal of Science and Technology (WJST), 5(1), 77-100.
  54. Toğrul, İ. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216. https://doi.org/10.1016/S0260-8774(02)00065-1
  55. Trujillo, F. J., Wiangkaew, C., & Tuan Pham, Q. (2007). Drying modeling and water diffusivity in beef meat. Journal of Food Engineering, 78, 74-85. https://doi.org/10.1016/j.jfoodeng.2005.09.010
  56. Vazquez, G., Chenlo, F., Moreira, R., & Costoyas, A. (1999). The dehydration of garlic. 1. Desorption isotherms and modelling of drying kinetics. Drying Technology, 17(6), 1095-1108. https://doi.org/10.1080/07373939908917596
  57. Wang, J., Tang, J., Rasco, B., Sablani, S. S., Ovissipour, M., & Qu, Z. (2018). Kinetics of Quality Changes of Shrimp (Litopenaeus setiferus) During Pasteurization. Food and Bioprocess Technolgy, 11, 1027-1038 https://doi.org/10.1007/s11947-018-2073
  58. Wisaiprom, N., Kasayapanand, N., Pratinthong, N., Songprakorp, R., Thepa, S., & Deeto, S. (2018). The study of shrimp drying by greenhouse drying combined with low humidity air. International Journal of Smart Grid and Clean Energy, 7(4), 303-313. https://doi.org/10.12720/sgce.7.4.303-313
  59. Yi, X. K., Wu, W. F., Zhang, Y. Q., Li, J. X., & Luo, H. P. (2012). Thin-Layer drying characteristics and modeling of Chinese Jujubes. Mathematical Problems in Engineering, 2012, 386214. https://doi.org/10.1155/2012/386214
  60. Zielinska, M., & Markowski, M. (2007). Drying behavior of carrots dried in a spout–fluidized bed dryer. Drying Technology, 25(1), 261-270. https://doi.org/10.1080/07373930601161138
CAPTCHA Image