با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه صنایع غذایی، جهاد دانشگاهی، مشهد، ایران

چکیده

پلی‌لاکتیک‌اسید پلیمری زیست‌تخریب‌پذیر است که خواص مکانیکی آن می‌تواند تحت تاثیر زمان تغییر کند. در این تحقیق ویژگی‌های مکانیکی شش نوع فیلم تولیدشده بر پایه پلی‌لاکتیک‌اسید با ترکیبات مختلف (پلی‌اتیلن‌گلیکول 400، تویین 80 و نانو ذرات اکسید روی) در بازه زمانی 14 ماهه (ماه‌های اول، دوم، سوم، چهارم و چهاردهم) مورد بررسی قرار گرفت و نتایج با مقادیر استاندارد گزارش‌شده برای پلی‌اتیلن با چگالی کم مقایسه شدند. به‌منظور بررسی ساختار اولیه فیلم‌ها جذب نور و زاویه تماس اندازه‌گیری شد و ریزساختارها به کمک میکروسکوپ الکترونی روبشی مورد مطالعه قرار گرفت. نتایج آنالیز واریانس نشان داد که تاثیر زمان نگهداری و نوع فیلم بر استحکام کششی و کرنش نقطه شکست معنادار بود. بیشترین ‌استحکام کششی، مدول الاستیسیته و کرنش نقطه شکست به‌ترتیب برای فیلم‌های پلی‌لاکتیک‌اسید خالص در ماه چهارم (94.08 مگاپاسکال)، پلی‌لاکتیک‌اسید خالص در ماه چهارم (2855.79 مگاپاسکال) و پلی‌لاکتیک‌اسید/پلی‌اتیلن‌گلیکول 400/نانو ذرات اکسید روی در ماه اول (76.82 درصد) به‌دست‌آمد. مقادیر کرنش نقطه شکست بسیار کمتر از استاندارد بود. با توجه به استحکام کششی و مدول الاستیسیته بسیار بالا پلی‌لاکتیک‌اسید می‌توان با استفاده از نرم‌کننده‌های مختلف با درصد بیشتر یا ترکیب کردن پلی‌لاکتیک‌اسید با سایر پلیمرها شکنندگی را کاهش داد.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Aktas, C., Polat, O., Beitollahpoor, M., Farzam, M., Pesika, N. S., & Sahiner, N. (2023). Force-Based Characterization of theWetting Properties of LDPE Surfaces Treated with CF4 and H2 Polymers, 15(9), 2132. https://doi.org/10.3390/polym15092132
  2. Arrieta, M. P., Garrido, L., Faba, S., Guarda, A., Galotto, M. J., & Dicastillo, C. L. D. (2020). Cucumis metuliferus Fruit Extract Loaded Acetate Cellulose Coatings for Antioxidant Active Packaging. Polymers, 12(6), 1248. https://doi.org/10.3390/polym12061248
  3. ASTM. (2008). Standard Specification for Polyethylene Films Made from Low-Density Polyethylene for General Use and Packaging Applications (Vol. D4635– 08a). USA.
  4. ASTM. (2010). Standard Test Method for Tensile Properties of Thin Plastic Sheeting (Vol. ASTM D882-02). USA.
  5. ASTM. (2017). Standard Test Method for Corona-Treated Polymer Films Using Water Contact Angle Measurements (Vol. ASTM D5946-04 ). USA.
  6. Avolio, R., Castaldo, R., Avella, M., Cocca, M., Gentile, G., Fiori, S., & Maria, E. E. (2018). PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Composites Part B, 152, 267-274. https://doi.org/10.1016/j.compositesb.2018.07.011
  7. Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M. A., & Zakir, M. (2016). Poly(lactic acid)/ Poly(ethylene glycol) Blends: Mechanical, Thermal And Morphological Properties. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/1.4945957
  8. Briassoulis, D., Athanasoulia, I. G., & Tserotas, P. (2022). PHB/PLA plasticized by olive oil and carvacrol solvent-cast films with optimised ductility and physical ageing stability. Polymer Degradation and Stability, 200, 1-21. https://10.1016/j.polymdegradstab.2022.109958
  9. Caicedo, C., Diaz-Cruz, C. A., Jimenez-Regalado, E. J., & Aguirre-Loredo, R. Y. (2022). Effect of Plasticizer Content on Mechanical and Water Vapor Permeability of Maize Starch/PVOH/Chitosan Composite Films. Materials, 15(4), 1274. https://doi:10.3390/ma15041274
  10. Chen, P., Xie, F., Tang, F., & McNally, T. (2021). Influence of plasticiser type and nanoclay on the properties of chitosan-based materials. European Polymer Journal, 144, 110225. https://doi.org/10.1016/j.eurpolymj.2020.110225
  11. Ching, L. W., Keesan, F. W. M., & Muhamad, I. I. (2022). Optimization of ZnO/GO nanocomposite-loaded polylactic acid active films using response surface methodology. Journal of King Saud University– Science, 34(3). https://doi.org/10.1016/j.jksus.2022.101835
  12. Falqi, F. H., Bin-Dahman, O. A., Hussain, M., & Al-Harthi, M. A. (2018). Preparation of Miscible PVA/PEG Blends and Effect of Graphene Concentration on Thermal, Crystallization, Morphological, and Mechanical Properties of PVA/PEG (10wt%) Blend. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/8527693
  13. Hanani, Z. A. N., & Husna, A. B. A. (2018). Effect of different types and concentrations of emulsifier on the functional properties of kappa-carrageenan films. International Journal of Biological Macromolecules, 114, 710-716. https://doi:10.1016/j.ijbiomac.2018.03.163
  14. Haq, M. A., Jafri, F. A., & Hasnain, A. (2016). Effects of plasticizers on sorption and optical properties of gum cordia based edible film. Journal of Food Science and Technology, 53, 2606-2613. https://doi:10.1007/s13197-016-2227-7
  15. Heydari-Majd, M., Ghanbarzadeh, B., Noghabi, M. S., & Abdolshahi, A. (2020). Poly (lactic acid) based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polymer Bulletin, 79, 97-119. https://doi.org/10.1007/s00289-020-03490-z
  16. Holcapkova, P., Hurajova, A., Kucharczyk, P., Bazant, P., Plachy, T., Miskolczi, N., & Sedlarik, V. (2018). Effect of polyethylene glycol plasticizer on long‐term antibacterial activity and the release profile of bacteriocin nisin from polylactide blends. Polymers for Advanced Technologies, 29(8), 1-11. https://doi.org/10.1002/pat.4336
  17. Irwanto, D., Pidhatika, B., Nurhajati, D. W., & Harjanto, S. (2019). Mechanical properties and crystallinity of linier low density polyethylene based biocomposite film. Kulit, Karet, dan Plastik, 35(2), 93-98. https://doi.org/10.20543/mkkp.v35i2.5624
  18. Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C. H., & Chambin, O. (2017). Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers, 9(7), 289. https://doi.org/10.3390/polym9070289
  19. Jr, A. E., Gross, I. P., Saatkamp, R. H., Pires, A. T. N., & Parize, A. L. (2020). Evaluation of mechanical, thermal and morphological properties of PLA films plasticized with maleic acid and its propyl ester derivatives. Polymer Testing, 88. https://doi.org/10.1016/j.polymertesting.2020.106552
  20. Judawisastra, H., Claudia, Sasmita, F., & Toni Agung, P. (2018). Elastic Modulus Determination of Thermoplastic Polymers with Pulse-Echo Method Ultrasonic Testing. Materials Science and Engineering, 547, 012047. https://doi:10.1088/1757-899X/547/1/012047
  21. Khoirunnisa, A. R., Joni, I. M., Panatarani, C., Rochima, E., & Praseptiangga, D. (2018). UV-Screening, Transparency and Water Barrier Properties of Semi Refined Iota Carrageenan Packaging Film Incorporated with ZnO Nanoparticles. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/1.5021234
  22. Kim, I., Viswanathan, K., Kasi, G., Sadeghi, K., Thanakkasaranee, S., & Seo, J. (2019). Poly (Lactic Acid)/ZnO Bionanocomposite Films with Positively Charged ZnO as Potential Antimicrobial Food Packaging Materials. Polymers, 11(9), 1-17. https://doi.org/10.3390/polym11091427
  23. Kojnokova, T., Novy, F., Markovicova, L., & Liptakova, T. (2021). Changes of mechanical properties of protective polyethylene films applied in transport bottles and containers for liquid media after exposure to selected liquid media. Transportation Research Procedia, 55, 731-736. https://doi.org/10.1016/j.trpro.2021.07.041
  24. Li, Y., Li, W., Deng, Y., Shao, J., Ma, J., & Kou, H. (2019). Theoretical model for the tensile strength of polymer materials considering the effects of temperature and particle content. Materials Research Express, 6. https://doi.org/10.1088/2053-1591/aae91b
  25. Lizundia, E., Ortellado, M. C. P., Guinault, A., Vilas, J. L., & Domenek, S. (2019). Impact of ZnO nanoparticle morphology on relaxation and transport properties of PLA nanocomposites. Polymer Testing, 75, 175-184. https://doi:10.1016/j.polymertesting.2019.02.009
  26. Luangtana-Anan, M., Nunthanid, J., & Limmatvapirat, S. (2010). Effect of Molecular Weight and Concentration of Polyethylene Glycol on Physicochemical Properties and Stability of Shellac Film. Journal of Agricultural and Food Chemistry, 58, 12934-12940. https://doi:10.1021/jf1031026
  27. Odian, G. (2004). Principles pf polymerization (4 ed.). New York: John Wiley & Sons.
  28. Pillai, S. K., Sivakumar, D., Ray, S. S., Obianom, P., Eggers, S., & Mhlabeni, T. (2020). Active nanocomposite films based on low density polyethylene/organically modified layered double hydroxides/thyme oil to retain retail shelf life and quality of Hass avocados. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/5.0029459
  29. Rahman, M. M., Islam, M. S., & Li, G. S. (2018). Development of PLA/CS/ZnO nanocomposites and optimization its mechanical, thermal and water absorption properties. Polymer Testing, 68, 302-308. https://doi.org/10.1016/j.polymertesting.2018.04.026
  30. Ruz-Cruz, M. A., Herrera-Franco, P. J., Flores-Johnson, E. A., Moreno-Chulim, M. V., Galera-Manzano, L. M., & Valadez-Gonzalez, A. (2022). Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. Journal of Materials Research and Technology, 18, 485-495. https://doi.org/10.1016/j.jmrt.2022.02.072
  31. Salunkhe, S. R. (2018). Study of Contact Angle and Surface Energy of CuS Thin Film. International Research Journal of Engineering and Technology (IRJET), 05(20), 1930-1933.
  32. Sangroniz, A., Zhu, J. B., Tang, X., Etxeberria, A., Chen, E. Y. X., & Sardon, H. (2019). Packaging materials with desired mechanical and barrier properties and full chemical recyclability. NATURE COMMUNICATIONS, 10. https://doi.org/10.1038/s41467-019-11525-x
  33. Shahid, S., & Gukhool, W. (2020). Experimental Testing and Material Modeling of Anisotropy in Injection Moulded Polymer Materials. (Master ), Blekinge Institute of Technology, Karlskrona, Sweden. https://doi:10.13140/RG.2.2.12587.87846
  34. Shankar, S., & Rhim, J. W. (2019). Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly(lactide)/poly(butylene adipate-coterephthalate) composite films. Food Packaging and Shelf Life, 21. https://doi.org/10.1016/j.fpsl.2019.100327
  35. Shankar, S., Wang, L. F., & Rhim, J. W. (2018). Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science & Engineering C, 93, 289-298. https://doi.org/10.1016/j.msec.2018.08.002
  36. Sharma, S., Jaiswal, A. K., Duffy, B., & Jaiswal, S. (2020). Ferulic acid incorporated active films based on poly(lactide) /poly(butylene adipate-co-terephthalate) blend for food packaging. Food Packaging and Shelf Life, 24. https://doi.org/10.1016/j.fpsl.2020.100491
  37. Sharma, S., Singh, A. A., Majumdar, A., & Butola, B. S. (2019). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971-8983. https://doi:10.1007/s10853-019-03521-9
  38. Sin, L. T., & Tueen, B. S. (2019). Mechanical Properties of Poly(Lactic Acid). In L. T. Sin & B. S. Tueen (Eds.), Polylactic Acid; A Practical Guide for the Processing, Manufacturing, and Applications of PLA (Second Edition ed., pp. 167_202): William Andrew Publishing. https://doi.org/10.1016/B978-0-12-814472-5.00005-4
  39. Speight, J. G. (2020). Monomers, polymers, and plastics Handbook of Industrial Hydrocarbon Processes. (pp. 499-537). United States: Gulf Professional Publishing. https://doi.org/10.1016/C2015-0-06314-6
  40. Szlachetka, O., Witkowska-Dobrev, J., Baryła, A., & Dohojda, M. (2021). Low-density polyethylene (LDPE) building films – Tensile properties and surface morphology. Journal of Building Engineering, 44, 103386. https://doi.org/10.1016/j.jobe.2021.103386
  41. Yu, F., Fei, X., He, Y., & Li, H. (2021). Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. International Journal of Biological Macromolecules, 186, 770-779. https://doi:10.1016/j.ijbiomac.2021.07.097
  42. Yuan, H., Li, T., Wang, Y., Ma, P., Du, M., Liu, T., ..., & Dong, W. (2020). Photoprotective and multifunctional polymer film with excellent near-infrared and UV shielding properties. Composites Communications, 22. https://doi.org/10.1016/j.coco.2020.100443
CAPTCHA Image