نوع مقاله : مقاله پژوهشی
نویسندگان
گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران
چکیده
توربینهای آبیجنبشی با قرارگیری درون رودخانه و بدون نیاز به ساخت سد یا بند آبگیر قادر به استحصال انرژی جنبشی آب و تولید برق هستند. یکی از موضوعاتی که در بهکارگیری این فناوری بسیار حائز اهمیت است موضوع پتانسیلسنجی و تخمین توان و انرژی نظری بهمنظور انتخاب مناطق مستعد نصب چنین تجهیزاتی است. از بین روشهای متنوع پتانسیلسنجی، در این پژوهش استفاده از هندسه هیدرولیک و محاسبه سرعت جریان از معادله مانینگ انتخاب شد. بهمنظور پیادهسازی این روش یک کد کامپیوتری توسعه یافت که طی 4 مرحله سرعت، چگالی توان و انرژی نظری سایتهای موردنظر را محاسبه و در اختیار کاربر قرار میدهد. برای پیادهسازی این روش دو ایستگاه هیدرومتری گچسر و سیرا در حوضه آبخیز سد کرج در استان البرز انتخاب شدند. ابتدا منحنی تداوم جریان هر ایستگاه با توابع توزیع احتمال برازش شد و سپس با استفاده از هندسه هیدرولیک و معادله مانینگ، سرعت، چگالی توان و انرژی جریان محاسبه شد. منحنی تداوم جریان هر دو ایستگاه مورد ارزیابی با توزیع لوگ نرمال و ضریب تعیین 0.99 برازش شدند. چگالی توان نظری برای ایستگاههای گچسر و سیرا با احتمال 90% و بیشتر بهترتیب برابر 1.2 و 1.67 کیلووات بر مترمربع برآورد شد. با توجه به عمق کم جریان، استفاده از توربینهای ساونیوس برای این دو سایت پیشنهاد میشود. بیشینه انرژی ماهانه تولیدی توسط یک دستگاه توربین با مساحت جاروب واحد در گچسر و سیرا نیز بهترتیب برابر 940 و 1142 کیلووات ساعت برآورد شد.
کلیدواژهها
موضوعات
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Adeogun, A. G., Ganiyu, H. O., Ladokun, L. L., & Ibitoye, B. A. (2020). Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria. Environmental Engineering Research, 25(3), 267-273. https://doi.org/10.4491/eer.2018.028
- Ali, F., Srisuwan, C., Techato, K., Bennui, A., Suepa, T., & Niammuad, D. (2020). Theoretical hydrokinetic power potential assessment of the U-Tapao River Basin using GIS. Energies, 13(7), 1749. https://doi.org/10.3390/en13071749
- Allen, P. M., Arnold, J. C., & Byars, B. W. (1994). Downstream channel geometry for use in planning‐level models 1. JAWRA Journal of the American Water Resources Association, 30(4), 663-671. https://doi.org/10.1111/j.1752-1688.1994.tb03321.x
- Arabkhedri, M., Sedarati, K., & Esmali, A. (2017). The trend of suspended sediment changes of Karaj and Jajroud rivers during recent decades. Watershed Engineering and Management, 9(1), 22-33. https://doi.org/10.22092/ijwmse.2017.108755
- Arman, N. (2006). Calibrating Manning's roughness coefficient in Karaj river reaches and analyzing it with HEC-RAS software University of Tehran. https://noordoc.ir/thesis/19284
- Babaei, L., Jalili, M. H., Aminzadeh, Z., Soleimani, F., & Hazbavi, Z. (2022). Modeling of monthly flow duration curve using nonlinear regression method for un-gauged watersheds of Ardabil Province. Iranian Journal of Rainwater Catchment Systems, 9(4), 1-18. http://jircsa.ir/article-1-439-fa.html
- Bomhof, J. (2014). Estimating flow, hydraulic geometry, and hydrokinetic power at ungauged locations in Canada University of Ottawa. http://hdl.handle.net/10393/30383
- Broad, S., & Corkrey, R. (2011). Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia. Journal of Environmental Management, 92(6), 1609-1617. https://doi.org/10.1016/j.jenvman.2011.01.023
- Burgan, H. I., & Aksoy, H. (2020). Monthly Flow Duration Curve Model for Ungauged River Basins. Water, 12(2). https://doi.org/10.3390/w12020338
- Chilkoti, V., Bolisetti, T., & Balachandar, R. (2019). Diagnostic evaluation of hydrologic models employing flow duration curve. Journal of Hydrologic Engineering, 24(6), 05019009. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001778
- Da Silva Holanda, P., Blanco, C. J. C., Mesquita, A. L. A., Junior, A. C. P. B., de Figueiredo, N. M., Macêdo, E. N., & Secretan, Y. (2017). Assessment of hydrokinetic energy resources downstream of hydropower plants. Renewable Energy, 101, 1203-1214. https://doi.org/10.1016/j.renene.2016.10.011
- dos Santos, I. F. S., Camacho, R. G. R., Tiago Filho, G. L., Botan, A. C. B., & Vinent, B. A. (2019). Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data. Renewable Energy, 143, 648-662. https://doi.org/10.1016/j.renene.2019.05.018
- Eshra, N. M., Zobaa, A. F., & Abdel Aleem, S. H. E. (2021). Assessment of mini and micro hydropower potential in Egypt: Multi-criteria analysis. Energy Reports, 7, 81-94. https://doi.org/10.1016/j.egyr.2020.11.165
- Fiedler, K., & Döll, P. (2010). Monthly and daily variations of continental water storage and flows. System Earth via Geodetic-Geophysical Space Techniques, 407-415. https://doi.org/10.1007/978-3-642-10228-8_35
- Gerlinger, K., & Demuth, N. (2000). Operational flood forecasting for the Moselle River Basin. Proceedings of the European Conference on Advances in Flood Research, Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany.
- Ghaforpur-Anbaran, P., Ahmadabadi, A., Ghanavati, E., & Yasi, M. (2023). Hydro-Morphological Analysis of Karaj River in the Urban Area from Beylqan to the Railway Bridge. Geography and Environmental Sustainability, 13(1), 21-39. https://doi.org/10.22126/ges.2022.8026.2552
- Henrique da Costa Oliveira, C., de Lourdes Cavalcanti Barros, M., Alves Castelo Branco, D., Soria, R., & Cesar Colonna Rosman, P. (2021). Evaluation of the hydraulic potential with hydrokinetic turbines for isolated systems in locations of the Amazon region. Sustainable Energy Technologies and Assessments, 45, 101079. https://doi.org/10.1016/j.seta.2021.101079
- Hu, Z., & Du, X. (2012). Reliability analysis for hydrokinetic turbine blades. Renewable Energy, 48, 251-262. https://doi.org/10.1016/j.renene.2012.05.002
- Hydrometry Stations Data. (2023). Iranian Water Resources Management Company. Retrieved 5/10/2023 from stu.wrm.ir
- Ibrahim, W., Mohamed, M., & Ismail, R. (2021). The potential of hydrokinetic energy harnessing in Pahang river basin. Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020: NUSYS’20, 1163-1176. https://doi.org/10.1007/978-981-16-2406-3_85
- Ibrahim, W., Mohamed, M., Ismail, R., Leung, P., Xing, W., & Shah, A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7. https://doi.org/10.1016/j.egyr.2021.04.003
- Jenkinson, R. (2010). Assessment of Canada’s hydrokinetic power potential.
- John, B., & Varghese, J. (2021a). Optimum sizing of hydrokinetic turbine integrated photovoltaic-battery system incorporating uncertainties of resources. International Journal of Green Energy, 18(6), 645-655. https://doi.org/10.1080/15435075.2021.1875472
- John, B., & Varghese, J. (2021b). Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems. Energy, 221, 119717. https://doi.org/10.1016/j.energy.2020.119717
- Kallio, M., Guillaume, J. H., Virkki, V., Kummu, M., & Virrantaus, K. (2021). Hydrostreamer v1. 0–improved streamflow predictions for local applications from an ensemble of downscaled global runoff products. Geoscientific Model Development, 14(8), 5155-5181. https://doi.org/10.5194/gmd-14-5155-2021
- Karam, A., Safari, A., & Hajehforosh Nia, S. (2015). Analysis of flood and fluvial processes in the occurrence of environmental hazards (Case Study: Arange Basin, Karaj River). Journal of Spatial Analysis Environmental Hazards, 2(2), 53-68. https://doi.org/10.18869/acadpub.jsaeh.2.2.53
- Karimi, S., Pourebrahim, S., Salajegheh, A., Malekian, A., Strauch, M., Volk, M., & Witing, F. (2021). Environmental flow requirements of Karaj River’s sub-watersheds using Flow Duration Curve and Indicators of Hydrological Alteration. Journal of Pasture and Watershed Management, 74(2), 393-405. https://doi.org/10.22059/jrwm.2021.270394.1322
- Keihani, A., Akhoondali, A., & Fathian, H. (2021). Multivariate Frequency Analysis of Peak Discharge and Suspended and Bed Sediment Load in Karaj Basin. Iran Water Resources Management, 17(1), 47-67.
- Khaliq, M., & Cousineau, J. (2020). Assessment of Canada’s Hydrokinetic Resources: A Review of Hydrologic Considerations. National Research Council Canada= Conseil national de recherches Canada.
- Khani, M. S., Shahsavani, Y., Mehraein, M., & Kisi, O. (2023). Performance evaluation of the savonius hydrokinetic turbine using soft computing techniques. Renewable Energy, 215, 118906. https://doi.org/10.1016/j.renene.2023.118906
- Khatooni, K., Hooshyaripor, F., MalekMohammadi, B., & Noori, R. (2023). A combined qualitative–quantitative fuzzy method for urban flood resilience assessment in Karaj City, Iran. Scientific Reports, 13(1), 241. https://doi.org/10.1038/s41598-023-27377-x
- Khosravi, K., Sheikh Khozani, Z., & Cooper, J. R. (2021). Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms. Environmental Modelling & Software, 144, 105165. https://doi.org/10.1016/j.envsoft.2021.105165
- Killingtveit, Å. (2019). 8- Hydropower. In T. M. Letcher (Ed.), Managing Global Warming (pp. 265-315). Academic Press. https://doi.org/10.1016/B978-0-12-814104-5.00008-9
- Killingtveit, Å. (2022). Hydropower Resources Assessment—Potential for Further Development. https://doi.org/10.1016/B978-0-12-819727-1.00069-8
- Kirby, K., Ferguson, S., Rennie, C., Nistor, I., & Cousineau, J. (2022). Assessments of available riverine hydrokinetic energy: a review. Canadian Journal of Civil Engineering, 49(6), 839-854. https://doi.org/10.1139/cjce-2021-0178
- Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52, 1-10. https://doi.org/10.1016/j.esd.2019.06.002
- Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58, 182-195. https://doi.org/10.1016/j.esd.2020.08.003
- Langat, P. K., Kumar, L., & Koech, R. (2019). Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow. Water, 11(4), 734. https://doi.org/10.3390/w11040734
- Lata-García, J., Jurado, F., Fernández-Ramírez, L. M., & Sánchez-Sainz, H. (2018). Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery. Energy, 159, 611-620. https://doi.org/10.1016/j.energy.2018.06.183
- Leopold, L. B., & Maddock Jr, T. (1953). The hydraulic geometry of stream channels and some physiographic implications [Report](252). (Professional Paper, Issue. U. S. G. P. Office. http://pubs.er.usgs.gov/publication/pp252
- Luan, J., Liu, D., Lin, M., & Huang, Q. (2021). The construction of the flow duration curve and the regionalization parameters analysis in the northwest of China. Journal of Water and Climate Change, 12(6), 2639-2653. https://doi.org/10.2166/wcc.2021.324
- Nhabetse, T., Cuamba, B., Kucel, S., & Mungoi, N. (2017). Assessment of hydrokinetic potential in the Umbeluzi Basin, Mozambique. Proceedings of the ISES Solar World Congress 2017 with IEA SHC Solar Heating and Cooling Conference, Abu Dhabi, UAE.
- Niebuhr, C. M., van Dijk, M., Neary, V. S., & Bhagwan, J. N. (2019). A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renewable and Sustainable Energy Reviews, 113. https://doi.org/10.1016/j.rser.2019.06.047
- Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., & Vogel, R. M. (2016). Regional flow duration curves: Geostatistical techniques versus multivariate regression. Advances in Water Resources, 96, 11-22. https://doi.org/10.1016/j.advwatres.2016.06.008
- Punys, P., Adamonyte, I., Kvaraciejus, A., Martinaitis, E., Vyciene, G., & Kasiulis, E. (2015). Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania. Renewable and Sustainable Energy Reviews, 50, 643-652. https://doi.org/10.1016/j.rser.2015.04.155
- Ridgill, M., Lewis, M. J., Robins, P. E., Patil, S. D., & Neill, S. P. (2022). Hydrokinetic energy conversion: A global riverine perspective. Journal of Renewable and Sustainable Energy, 14(4), 044501. https://doi.org/10.1063/5.0092215
- Saini, G., Kumar, A., & Saini, R. P. (2021). Assessment of hydrokinetic energy– A case study of eastern Yamuna canal. Materials Today: Proceedings, 46, 5223-5227. https://doi.org/10.1016/j.matpr.2020.08.595
- Saini, G., & Saini, R. P. (2023). Hydrokinetic as an Emerging Technology. Smart Energy and Advancement in Power Technologies, 711-721. https://doi.org/10.1007/978-981-19-4971-5_52
- Samadi, A., & Azizian, A. (2021). Investigation of hydromorphological changes of Karaj River due to the implementation of water resources development and river engineering projects. Journal of Hydraulics, 16(1), 93-110. https://doi.org/10.30482/JHYD.2021.265438.1499
- Saupi, A. F. M., Mailah, N. F., Radzi, M. A. M., Ahmad, S. Z., & Soh, A. C. (2018). Hydrokinetic Energy Assessment in Unregulated River for Hydrokinetic Performance Analysis Studies in East Malaysia. https://doi.org/10.20944/preprints201804.0357.v1
- Schulze, K., Hunger, M., & Döll, P. (2005). Simulating river flow velocity on global scale. Advances in Geosciences, 5, 133-136. https://doi.org/10.5194/adgeo-5-133-2005
- Singh, V. (2022). Handbook of Hydraulic Geometry. Cambridge University Press.
- Sojka, M. (2022). Directions and Extent of Flows Changes in Warta River Basin (Poland) in the Context of the Efficiency of Run-of-River Hydropower Plants and the Perspectives for Their Future Development. Energies, 15(2). https://doi.org/10.3390/en15020439
- Tahershamsi, A., & Imanshoar, F. (2010). Determination of River Regime Equations Based on Stream Power Equation. Journal of Civil and Surveying Engineering, 44(1). https://jcse.ut.ac.ir/article_20753.html
- Tahir, M. U. R., Amin, A., Baig, A. A., Manzoor, S., Haq, A., Asgha, M. A., & Khawaja, W. A. G. (2021). Design and optimization of grid Integrated hybrid on-site energy generation system for rural area in AJK-Pakistan using HOMER software. AIMS Energy, 9(6), 1113-1135. https://doi.org/10.3934/energy.2021051
- Tan, K. W., Kirke, B., & Anyi, M. (2021). Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 63, 41-50. https://doi.org/10.1016/j.esd.2021.05.005
- Tigabu, M. T., Wood, D. H., & Admasu, B. T. (2020). Resource assessment for hydro-kinetic turbines in Ethiopian rivers and irrigation canals. Energy for Sustainable Development, 58, 209-224. https://doi.org/10.1016/j.esd.2020.08.005
- Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., & Alcamo, J. (2012). Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe. Journal of Hydrology, 424, 238-251. https://doi.org/10.1016/j.jhydrol.2012.01.005
- Vogel, R. M., & Fennessey, N. M. (1995). Flow duration curves II: A review of applications in water resources planning 1. JAWRA Journal of the American Water Resources Association, 31(6), 1029-1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x
- Wulf, H., Bookhagen, B., & Scherler, D. (2016). Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 88, 152-169. https://doi.org/10.1016/j.advwatres.2015.12.004
- Yadav, P. K., Kumar, A., & Jaiswal, S. (2023). A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need. Energy Reports, 9, 2102-2117. https://doi.org/10.1016/j.egyr.2023.01.033
- Zhu, Y., Tao, S., Sun, J., Wang, X., Li, X., Tsang, D. C., Zhu, L., Shen, G., Huang, H., & Cai, C. (2019). Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. Science of the Total Environment, 647, 962-972. https://doi.org/10.1016/j.scitotenv.2018.08.075
ارسال نظر در مورد این مقاله