با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

توربین‎های آبی‎جنبشی با قرارگیری درون رودخانه و بدون نیاز به ساخت سد یا بند آبگیر قادر به استحصال انرژی جنبشی آب و تولید برق هستند. یکی از موضوعاتی که در به‎کارگیری این فناوری بسیار حائز اهمیت است موضوع پتانسیل‎سنجی و تخمین توان و انرژی نظری به‌منظور انتخاب مناطق مستعد نصب چنین تجهیزاتی است. از بین روش‎های متنوع پتانسیل‎سنجی، در این پژوهش استفاده از هندسه هیدرولیک و محاسبه سرعت جریان از معادله مانینگ انتخاب شد. به‌منظور پیاده‎سازی این روش یک کد کامپیوتری توسعه یافت که طی 4 مرحله سرعت، چگالی توان و انرژی نظری سایت‎های موردنظر را محاسبه و در اختیار کاربر قرار می‎دهد. برای پیاده‎سازی این روش دو ایستگاه هیدرومتری گچسر و سیرا در حوضه آبخیز سد کرج در استان البرز انتخاب شدند. ابتدا منحنی تداوم جریان هر ایستگاه با توابع توزیع احتمال برازش شد و سپس با استفاده از هندسه هیدرولیک و معادله مانینگ، سرعت، چگالی توان و انرژی جریان محاسبه شد. منحنی تداوم جریان هر دو ایستگاه مورد ارزیابی با توزیع لوگ نرمال و ضریب تعیین 0.99 برازش شدند. چگالی توان نظری برای ایستگاه‎های گچسر و سیرا با احتمال 90% و بیشتر به‌ترتیب برابر 1.2 و 1.67 کیلووات بر مترمربع برآورد شد. با توجه به عمق کم جریان، استفاده از توربین‎های ساونیوس برای این دو سایت پیشنهاد می‎شود. بیشینه انرژی ماهانه تولیدی توسط یک دستگاه توربین‎ با مساحت جاروب واحد در گچسر و سیرا نیز به‌ترتیب برابر 940 و 1142 کیلووات ساعت برآورد شد.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Adeogun, A. G., Ganiyu, H. O., Ladokun, L. L., & Ibitoye, B. A. (2020). Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria. Environmental Engineering Research, 25(3), 267-273. https://doi.org/10.4491/eer.2018.028
  2. Ali, F., Srisuwan, C., Techato, K., Bennui, A., Suepa, T., & Niammuad, D. (2020). Theoretical hydrokinetic power potential assessment of the U-Tapao River Basin using GIS. Energies, 13(7), 1749. https://doi.org/10.3390/en13071749
  3. Allen, P. M., Arnold, J. C., & Byars, B. W. (1994). Downstream channel geometry for use in planning‐level models 1. JAWRA Journal of the American Water Resources Association, 30(4), 663-671. https://doi.org/10.1111/j.1752-1688.1994.tb03321.x
  4. Arabkhedri, M., Sedarati, K., & Esmali, A. (2017). The trend of suspended sediment changes of Karaj and ‎Jajroud rivers during recent decades. Watershed Engineering and Management, 9(1), 22-33. https://doi.org/10.22092/ijwmse.2017.108755
  5. Arman, N. (2006). Calibrating Manning's roughness coefficient in Karaj river reaches and analyzing it with HEC-RAS software University of Tehran. https://noordoc.ir/thesis/19284
  6. Babaei, L., Jalili, M. H., Aminzadeh, Z., Soleimani, F., & Hazbavi, Z. (2022). Modeling of monthly flow duration curve using nonlinear regression method for un-gauged watersheds of Ardabil Province. Iranian Journal of Rainwater Catchment Systems, 9(4), 1-18. http://jircsa.ir/article-1-439-fa.html
  7. Bomhof, J. (2014). Estimating flow, hydraulic geometry, and hydrokinetic power at ungauged locations in Canada University of Ottawa. http://hdl.handle.net/10393/30383
  8. Broad, S., & Corkrey, R. (2011). Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia. Journal of Environmental Management, 92(6), 1609-1617. https://doi.org/10.1016/j.jenvman.2011.01.023
  9. Burgan, H. I., & Aksoy, H. (2020). Monthly Flow Duration Curve Model for Ungauged River Basins. Water, 12(2). https://doi.org/10.3390/w12020338
  10. Chilkoti, V., Bolisetti, T., & Balachandar, R. (2019). Diagnostic evaluation of hydrologic models employing flow duration curve. Journal of Hydrologic Engineering, 24(6), 05019009. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001778
  11. Da Silva Holanda, P., Blanco, C. J. C., Mesquita, A. L. A., Junior, A. C. P. B., de Figueiredo, N. M., Macêdo, E. N., & Secretan, Y. (2017). Assessment of hydrokinetic energy resources downstream of hydropower plants. Renewable Energy, 101, 1203-1214. https://doi.org/10.1016/j.renene.2016.10.011
  12. dos Santos, I. F. S., Camacho, R. G. R., Tiago Filho, G. L., Botan, A. C. B., & Vinent, B. A. (2019). Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data. Renewable Energy, 143, 648-662. https://doi.org/10.1016/j.renene.2019.05.018
  13. Eshra, N. M., Zobaa, A. F., & Abdel Aleem, S. H. E. (2021). Assessment of mini and micro hydropower potential in Egypt: Multi-criteria analysis. Energy Reports, 7, 81-94. https://doi.org/10.1016/j.egyr.2020.11.165
  14. Fiedler, K., & Döll, P. (2010). Monthly and daily variations of continental water storage and flows. System Earth via Geodetic-Geophysical Space Techniques, 407-415. https://doi.org/10.1007/978-3-642-10228-8_35
  15. Gerlinger, K., & Demuth, N. (2000). Operational flood forecasting for the Moselle River Basin. Proceedings of the European Conference on Advances in Flood Research, Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany.
  16. Ghaforpur-Anbaran, P., Ahmadabadi, A., Ghanavati, E., & Yasi, M. (2023). Hydro-Morphological Analysis of Karaj River in the Urban Area from Beylqan to the Railway Bridge. Geography and Environmental Sustainability, 13(1), 21-39. https://doi.org/10.22126/ges.2022.8026.2552
  17. Henrique da Costa Oliveira, C., de Lourdes Cavalcanti Barros, M., Alves Castelo Branco, D., Soria, R., & Cesar Colonna Rosman, P. (2021). Evaluation of the hydraulic potential with hydrokinetic turbines for isolated systems in locations of the Amazon region. Sustainable Energy Technologies and Assessments, 45, 101079. https://doi.org/10.1016/j.seta.2021.101079
  18. Hu, Z., & Du, X. (2012). Reliability analysis for hydrokinetic turbine blades. Renewable Energy, 48, 251-262. https://doi.org/10.1016/j.renene.2012.05.002
  19. Hydrometry Stations Data. (2023). Iranian Water Resources Management Company. Retrieved 5/10/2023 from stu.wrm.ir
  20. Ibrahim, W., Mohamed, M., & Ismail, R. (2021). The potential of hydrokinetic energy harnessing in Pahang river basin. Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020: NUSYS’20, 1163-1176. https://doi.org/10.1007/978-981-16-2406-3_85
  21. Ibrahim, W., Mohamed, M., Ismail, R., Leung, P., Xing, W., & Shah, A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7. https://doi.org/10.1016/j.egyr.2021.04.003
  22. Jenkinson, R. (2010). Assessment of Canada’s hydrokinetic power potential.
  23. John, B., & Varghese, J. (2021a). Optimum sizing of hydrokinetic turbine integrated photovoltaic-battery system incorporating uncertainties of resources. International Journal of Green Energy, 18(6), 645-655. https://doi.org/10.1080/15435075.2021.1875472
  24. John, B., & Varghese, J. (2021b). Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems. Energy, 221, 119717. https://doi.org/10.1016/j.energy.2020.119717
  25. Kallio, M., Guillaume, J. H., Virkki, V., Kummu, M., & Virrantaus, K. (2021). Hydrostreamer v1. 0–improved streamflow predictions for local applications from an ensemble of downscaled global runoff products. Geoscientific Model Development, 14(8), 5155-5181. https://doi.org/10.5194/gmd-14-5155-2021
  26. Karam, A., Safari, A., & Hajehforosh Nia, S. (2015). Analysis of flood and fluvial processes in the occurrence of environmental hazards (Case Study: Arange Basin, Karaj River). Journal of Spatial Analysis Environmental Hazards, 2(2), 53-68. https://doi.org/10.18869/acadpub.jsaeh.2.2.53
  27. Karimi, S., Pourebrahim, S., Salajegheh, A., Malekian, A., Strauch, M., Volk, M., & Witing, F. (2021). Environmental flow requirements of Karaj River’s sub-watersheds using Flow Duration Curve and Indicators of Hydrological Alteration. Journal of Pasture and Watershed Management, 74(2), 393-405. https://doi.org/10.22059/jrwm.2021.270394.1322
  28. Keihani, A., Akhoondali, A., & Fathian, H. (2021). Multivariate Frequency Analysis of Peak Discharge and Suspended and Bed Sediment Load in Karaj Basin. Iran Water Resources Management, 17(1), 47-67.
  29. Khaliq, M., & Cousineau, J. (2020). Assessment of Canada’s Hydrokinetic Resources: A Review of Hydrologic Considerations. National Research Council Canada= Conseil national de recherches Canada.
  30. Khani, M. S., Shahsavani, Y., Mehraein, M., & Kisi, O. (2023). Performance evaluation of the savonius hydrokinetic turbine using soft computing techniques. Renewable Energy, 215, 118906. https://doi.org/10.1016/j.renene.2023.118906
  31. Khatooni, K., Hooshyaripor, F., MalekMohammadi, B., & Noori, R. (2023). A combined qualitative–quantitative fuzzy method for urban flood resilience assessment in Karaj City, Iran. Scientific Reports, 13(1), 241. https://doi.org/10.1038/s41598-023-27377-x
  32. Khosravi, K., Sheikh Khozani, Z., & Cooper, J. R. (2021). Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms. Environmental Modelling & Software, 144, 105165. https://doi.org/10.1016/j.envsoft.2021.105165
  33. Killingtveit, Å. (2019). 8- Hydropower. In T. M. Letcher (Ed.), Managing Global Warming (pp. 265-315). Academic Press. https://doi.org/10.1016/B978-0-12-814104-5.00008-9
  34. Killingtveit, Å. (2022). Hydropower Resources Assessment—Potential for Further Development. https://doi.org/10.1016/B978-0-12-819727-1.00069-8
  35. Kirby, K., Ferguson, S., Rennie, C., Nistor, I., & Cousineau, J. (2022). Assessments of available riverine hydrokinetic energy: a review. Canadian Journal of Civil Engineering, 49(6), 839-854. https://doi.org/10.1139/cjce-2021-0178
  36. Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52, 1-10. https://doi.org/10.1016/j.esd.2019.06.002
  37. Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58, 182-195. https://doi.org/10.1016/j.esd.2020.08.003
  38. Langat, P. K., Kumar, L., & Koech, R. (2019). Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow. Water, 11(4), 734. https://doi.org/10.3390/w11040734
  39. Lata-García, J., Jurado, F., Fernández-Ramírez, L. M., & Sánchez-Sainz, H. (2018). Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery. Energy, 159, 611-620. https://doi.org/10.1016/j.energy.2018.06.183
  40. Leopold, L. B., & Maddock Jr, T. (1953). The hydraulic geometry of stream channels and some physiographic implications [Report](252). (Professional Paper, Issue. U. S. G. P. Office. http://pubs.er.usgs.gov/publication/pp252
  41. Luan, J., Liu, D., Lin, M., & Huang, Q. (2021). The construction of the flow duration curve and the regionalization parameters analysis in the northwest of China. Journal of Water and Climate Change, 12(6), 2639-2653. https://doi.org/10.2166/wcc.2021.324
  42. Nhabetse, T., Cuamba, B., Kucel, S., & Mungoi, N. (2017). Assessment of hydrokinetic potential in the Umbeluzi Basin, Mozambique. Proceedings of the ISES Solar World Congress 2017 with IEA SHC Solar Heating and Cooling Conference, Abu Dhabi, UAE.
  43. Niebuhr, C. M., van Dijk, M., Neary, V. S., & Bhagwan, J. N. (2019). A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renewable and Sustainable Energy Reviews, 113. https://doi.org/10.1016/j.rser.2019.06.047
  44. Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., & Vogel, R. M. (2016). Regional flow duration curves: Geostatistical techniques versus multivariate regression. Advances in Water Resources, 96, 11-22. https://doi.org/10.1016/j.advwatres.2016.06.008
  45. Punys, P., Adamonyte, I., Kvaraciejus, A., Martinaitis, E., Vyciene, G., & Kasiulis, E. (2015). Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania. Renewable and Sustainable Energy Reviews, 50, 643-652. https://doi.org/10.1016/j.rser.2015.04.155
  46. Ridgill, M., Lewis, M. J., Robins, P. E., Patil, S. D., & Neill, S. P. (2022). Hydrokinetic energy conversion: A global riverine perspective. Journal of Renewable and Sustainable Energy, 14(4), 044501. https://doi.org/10.1063/5.0092215
  47. Saini, G., Kumar, A., & Saini, R. P. (2021). Assessment of hydrokinetic energy– A case study of eastern Yamuna canal. Materials Today: Proceedings, 46, 5223-5227. https://doi.org/10.1016/j.matpr.2020.08.595
  48. Saini, G., & Saini, R. P. (2023). Hydrokinetic as an Emerging Technology. Smart Energy and Advancement in Power Technologies, 711-721. https://doi.org/10.1007/978-981-19-4971-5_52
  49. Samadi, A., & Azizian, A. (2021). Investigation of hydromorphological changes of Karaj River due to the implementation of water resources development and river engineering projects. Journal of Hydraulics, 16(1), 93-110. https://doi.org/10.30482/JHYD.2021.265438.1499
  50. Saupi, A. F. M., Mailah, N. F., Radzi, M. A. M., Ahmad, S. Z., & Soh, A. C. (2018). Hydrokinetic Energy Assessment in Unregulated River for Hydrokinetic Performance Analysis Studies in East Malaysia. https://doi.org/10.20944/preprints201804.0357.v1
  51. Schulze, K., Hunger, M., & Döll, P. (2005). Simulating river flow velocity on global scale. Advances in Geosciences, 5, 133-136. https://doi.org/10.5194/adgeo-5-133-2005
  52. Singh, V. (2022). Handbook of Hydraulic Geometry. Cambridge University Press.
  53. Sojka, M. (2022). Directions and Extent of Flows Changes in Warta River Basin (Poland) in the Context of the Efficiency of Run-of-River Hydropower Plants and the Perspectives for Their Future Development. Energies, 15(2). https://doi.org/10.3390/en15020439
  54. Tahershamsi, A., & Imanshoar, F. (2010). Determination of River Regime Equations Based on Stream Power Equation. Journal of Civil and Surveying Engineering, 44(1). https://jcse.ut.ac.ir/article_20753.html
  55. Tahir, M. U. R., Amin, A., Baig, A. A., Manzoor, S., Haq, A., Asgha, M. A., & Khawaja, W. A. G. (2021). Design and optimization of grid Integrated hybrid on-site energy generation system for rural area in AJK-Pakistan using HOMER software. AIMS Energy, 9(6), 1113-1135. https://doi.org/10.3934/energy.2021051
  56. Tan, K. W., Kirke, B., & Anyi, M. (2021). Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 63, 41-50. https://doi.org/10.1016/j.esd.2021.05.005
  57. Tigabu, M. T., Wood, D. H., & Admasu, B. T. (2020). Resource assessment for hydro-kinetic turbines in Ethiopian rivers and irrigation canals. Energy for Sustainable Development, 58, 209-224. https://doi.org/10.1016/j.esd.2020.08.005
  58. Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., & Alcamo, J. (2012). Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe. Journal of Hydrology, 424, 238-251. https://doi.org/10.1016/j.jhydrol.2012.01.005
  59. Vogel, R. M., & Fennessey, N. M. (1995). Flow duration curves II: A review of applications in water resources planning 1. JAWRA Journal of the American Water Resources Association, 31(6), 1029-1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x
  60. Wulf, H., Bookhagen, B., & Scherler, D. (2016). Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 88, 152-169. https://doi.org/10.1016/j.advwatres.2015.12.004
  61. Yadav, P. K., Kumar, A., & Jaiswal, S. (2023). A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need. Energy Reports, 9, 2102-2117. https://doi.org/10.1016/j.egyr.2023.01.033
  62. Zhu, Y., Tao, S., Sun, J., Wang, X., Li, X., Tsang, D. C., Zhu, L., Shen, G., Huang, H., & Cai, C. (2019). Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. Science of the Total Environment, 647, 962-972. https://doi.org/10.1016/j.scitotenv.2018.08.075
CAPTCHA Image