با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 گروه باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

10.22067/jam.2023.84550.1191

چکیده

کپک سیاه حاصل از قارچ آسپرژیلوس نایجر یکی از زیان‌بارترین بیماری‌های پس از برداشت انگور است. پلاسمای سرد در فشار اتمسفر، یک روش نوین به‌منظور میکروب‌زدایی از محصولات کشاورزی طی دوران پس از برداشت محصول می‌باشد. از این رو هدف از انجام این تحقیق بررسی تاثیر سطوح مختلف پلاسمای سرد در فشار اتمسفر (با مدت زمان صفر، 10، 20 و 40 ثانیه) بر نرخ پوسیدگی کپک سیاه و بار میکروبی همراه با برخی از پارامترهای کیفی انگور (Vitic vinifera) تلقیح‌شده با قارچ  آسپرژیلوس نایجر طی انبارداری در دمای 4 درجه سانتی‌گراد بود. نتایج نشان داد پلاسما به‌طور موثری باعث کاهش بار میکروبی و درصد پوسیدگی کپک سیاه طی دوران انبارداری می‌شود. بالاترین میزان میکروب‌زدایی در پلاسما 40 ثانیه صورت گرفت. برای پارامترهای کیفی پس از برداشت، پلاسمای کمتر از 40 ثانیه (10 و 20 ثانیه) حداقل تاثیر را در شاخص‌های شیمیایی (pH،TSS  و TA)، دمای محصول، شاخص‌های رنگ‌سنجی، تغییر رنگ، افت وزن، شاخص‌های مکانیکی و در نهایت سفتی بافت در انتهای دوره انبارداری داشت. بالاترین تغییرات در خواص شیمیایی، مکانیکی و فیزیکی انگور در انتهای انبارداری و در پلاسما 40 ثانیه به دلیل آسیب به بافت به‌ویژه در محل دم میوه صورت گرفت. در کل به نظر می‌رسد تیمارهای کوتاه‌مدت پلاسما بتواند راهکار مناسبی هم‌زمان برای کاهش پوسیدگی‌های قارچی همراه با حفظ پارامترهای کیفی انگور و طی دوره نگهداری باشد.

کلیدواژه‌ها

موضوعات

  1. Aday, M. S., Büyükcan, M. B., Temizkan, R., & Caner, C. (2013). Role of ozone concentrations and exposure times in extending the shelf life of strawberry. Ozone: Science and Engineering, 36(1), 43-56. https://doi.org/10.1080/01919512.2013.833851
  2. Arfaoui, M., Vallance, J., Bruez, E., Rezgui, A., Melki, I., Chebil, S., & Rey, P. (2019). Isolation, identification, and in vitro characterization of grapevine rhizobacteria to control ochratoxigenic Aspergillus spp. on grapes. Biological Control, 129, 201-211. https://doi.org/10.1016/j.biocontrol.2018.10.019
  3. Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., & Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control, 34(1), 149-157. https://doi.org/10.1016/j.foodcont.2013.04.022
  4. Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K., (2018). The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology, 36(6), 615-626. https://doi.org/10.1016/j.tibtech.2017.11.001
  5. Butscher, D., Zimmermann, D., Schuppler, M., & Von Rohr, P. R. (2016). Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control, 60, 636-645. https://doi.org/10.1016/j.foodcont.2015.09.003
  6. Chelladurai, V., Jayas, D. S., & White, N. D. G. (2010). Thermal imaging for detecting fungal infection in stored wheat. Journal of Stored Products Research, 46(3), 174-179. https://doi.org/10.1016/j.jspr.2010.04.002
  7. Crisosto, C. H. (2002). Mitchell, F.G. Postharvest Handling Systems: Table grapes. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; University of California Agricultural and Natural Resources Pub: Davis, CA, USA. pp. 357-363.
  8. Dasan, G. B., & Boyaci, I. H. (2018). Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food and Bioprocess Technology, 11(2), 334-343. https://doi.org/10.1007/s11947-017-2014-0
  9. De Simone, N., Pace, B., Grieco, F., Chimienti, M., Tyibilika, V., Santoro, V., & Russo, P. (2020). Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post- harvest. Foods, 9(9), 1138. https://doi.org/10.3390/foods9091138
  10. Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11, 115020. https://doi.org/10.1088/1367-2630/11/11/115020
  11. Dong, X. Y., & Yang, Y. L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8), 1409-1421. https://doi.org/10.1007/s11947-019-02305-y
  12. Duarte-Sierra, A., Aispuro-Hernández, E., Vargas-Arispuro, I., Islas-Osuna, M. A., González-Aguilar, G. A., & Martínez-Téllez, M. Á. (2016). Quality and PR geneexpression of table grapes treated with ozone and sulfur dioxide to control fungal decay. Journal of Science and Food Agriculture, 96, 2018-2024. https://doi.org/10.1002/jsfa.7312
  13. FAO. (2021). http://www.faostat.fao.org/. Access date 24 March 2023.
  14. Fernandez, A., Noriega, E., & Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33(1), 24-29. https://doi.org/10.1016/j.fm.2012.08.007
  15. Gabler, F. M., & Smilanick, J. L. (2001). Postharvest control of table grape gray mold on detached berries with carbonate and bicarbonate salts and disinfectants. American Journal of Enology and Viticulture, 52, 12-2. https://doi.org/10.5344/ajev.2001.52.1.12
  16. Ghorashi, A. H., Tasouji, M. R., & Kargarian, A. (2020). Optimum cold plasma generating device for treatment of Aspergillus flavus from nuts surface. Journal of Food Science and Technology57, 3988-3994. https://doi.org/10.1007/s13197-020-04429-y
  17. Hellebrand, H. J., Beuche, H., & Linke, M. (2002). Thermal imaging: A promising high-tec method in agriculture and horticulture. Physical Methods in Agriculture: Approach to Precision and Quality, 411-427. https://doi.org/10.1007/978-1-4615-0085-8_22
  18. Himelrick, D. G. (2003). Handling, storage and postharvest physiology of Muscadine grapes: A review. Small Fruits Review2(4), 45-62. https://doi.org/10.1300/J301v02n04_06
  19. Hu, X., Sun, H., Yang, X., Cui, D., Wang, Y., Zhuang, J., & Jiao, Z. (2021). Potential use of atmospheric cold plasma for postharvest preservation of blueberries. Postharvest Biology and Technology, 179, 111564. https://doi.org/10.1016/j.postharvbio.2021.111564
  20. Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46, 51-57. https://doi.org/10.1016/j.fm.2014.07.009
  21. Kader, A. A., & Watkins, C. B. (2000). Modified atmosphere packaging-toward 2000 and beyond. HortTechnology, 10(3), 483-486. https://doi.org/10.21273/HORTTECH.10.3.483
  22. Kasfi, K., Taheri, P., Jafarpour, B., & Tarighi, S. (2018). Characterization of antagonistic microorganisms against Aspergillus spp. from grapevine leaf and berry surfaces. Journal of Plant Pathology, 100, 179-190. https://doi.org/10.1007/s42161-018-0042-x
  23. Khodamoradi, S., & Ahmadi, E. (2019). Effect of Chitosan Coating on Physical, Mechanical and Chemical Properties of Grapes during Storage. Journal of Agricultural Machinery, 9(2), 347-364. (In Persian). https://doi.org/10.22067/jam.v9i2.69423
  24. Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X. T., Sites, J., Boyd, G., & Chen, H. Q. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479-484. https://doi.org/10.1016/ j.fm.2014.09.010
  25. Lu, S. L., Yang, X. Z., Li, X. H., Shen, L. M., & Ma, H. Y. (2013). Effect of sulfur dioxide treatment on storage quality and SO2 residue of victoria grape. Advanced Materials Research, 798, 1033-1036. https://www.scientific.net/AMR.798-799.1033
  26. Ma, R. N., Yu, S., Tian, Y., Wang, K. L., Sun, C. D., Li, X., Zhang, J., Chen, K. S., & Fang, J. (2016). Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food Bioprocess Technology, 9(11), 1825-1834. https://doi.org/10.1007/s11947-016-1761-7
  27. Meng, X. H., Qin, G. Z., & Tian, S. P. (2010). Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT-Food Science and Technology, 43(4), 596-601. https://doi.org/10.1016/j.lwt.2009.10.007
  28. Min, S. C., Roh, S. H., Niemira, B. A., Boyd, G., Sites, J. E., Fan, X., Sokorai, K., & Jin, T. Z. (2018). In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Research International, 108, 378-386. https://doi.org/10.1016/j.foodres.2018.03.033
  29. Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J. P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177-182. https://doi.org/10.1016/j.jbiosc.2014.02.005
  30. Olivas, G. I., & Barbosa-Cánovas, G. (2009). Edible films and coatings for fruits and vegetables:  In: Huber, K., Embuscado, M. (eds), Edible films and coatings for food applications, Springer, New York, pp. 211-244. NY. https://doi.org/10.1007/978-0-387-92824-1_7
  31. Oliver, R. P., & Hewitt, H. G. (2014). Fungicides in crop protection. Published by Cabi.
  32. Ott, L. C., Appleton, H. J., Shi, H., Keener, K., & Mellata, M. (2021). High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiology, 95, 103669. https://doi.org/10.1016/j.fm.2020.103669
  33. Pan, Y. W., Cheng, J. H., & Sun, D. W. (2021). Inhibition of fruit softening by cold plasma treatments: Affecting factors and applications. Critical Reviews in Food Science and Nutrition, 61(12), 1935-1946. https://doi.org/10.1080/10408398.2020.1776210
  34. Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus). Food Control, 60, 552-559. https://doi.org/10.1016/j.foodcont.2015.08.043
  35. Pezzuto, J. M. (2008). Grapes and human health: a perspective. Journal of Agricultural and Food Chemistry, 56(16), 6777-6784. https://pubs.acs.org/doi/abs/10.1021/jf800898p
  36. Ponsone, M. L., Chiotta, M. L., Combina, M., Dalcero, A., & Chulze, S. (2011). Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. International Journal of Food Microbiology, 151(1), 70-77. https://doi.org/10.1016/j.ijfoodmicro.2011.08.005
  37. Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55-65. https://doi.org/10.1016/j.postharvbio.2015.04.008
  38. Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57, 102-112. https://doi.org/10.1007/s13197-019-04035-7
  39. Rux, G., Mahajan, P., Linke, M., Saengerlaub, S., Pant, A., Caleb, O., & Geyer, M. (2015). Application of humidity-regulating trays for packaging of fresh strawberry and tomato. In III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety, 1141, 263-268. https://doi.org/10.17660/ActaHortic.2016.1141.32
  40. Sanchez-Ballesta, M. T., Alvarez, I., Escribano, M. I., Merodio, C., & Romero, I. (2020). Effect of high CO2 levels and low temperature on stilbene biosynthesis pathway gene expression and stilbenes production in white, red and black table grape cultivars during postharvest storage. Plant Physiology and Biochemistry151, 334-341. https://doi.org/10.1016/j.plaphy.2020.03.049
  41. Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104-5109. https://doi.org/10.1016/j.biortech.2007.09.076
  42. Song, A. Y., Oh, Y. J., Kim, J. E., Song, K. B., Oh, D. H., & Min, S. C. (2015). Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Science and Biotechnolgy, 24, 1717-1724. https://doi.org/10.1007/s10068-015-0223-8
  43. Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science and Emerging Technologies, 33, 225. https://doi.org/10.1016/j.ifset.2015.12.022
  44. Varith, J., Hyde, G. M., Baritelle, A. L., Fellman, J. K., & Sattabongkot, T. (2003). Noncontact bruise detection in apples by thermal imaging. Innovative Food Science & Emerging Technologies, 4(2), 211-218. https://doi.org/10.1016/S1466-8564(03)00021-3
  45. Wiktor, A., Hrycak, B., Jasinski, M., Rybak, K., Kieliszek, M., Krasniewska, K., & Witrowa- Rajchert, D. (2020). Impact of atmospheric pressure microwave plasma treatment on quality of selected spices. Applied Sciences-Basel, 10 (19), 6815. https://doi.org/10.3390/app10196815
  46. Xu, H. B., Ma, R. N., Zhu, Y. P., Du, M. R., Zhang, H., & Jiao, Z. (2020). A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection. Science of Total Environment, 703, 134965 https://doi.org/10.1016/j. scitotenv.2019.134965
  47. Xu, H. B., Zhu, Y. P., Du, M. R., Wang, Y. Q., Ju, S. Y., Ma, R. N., & Jiao, Z. (2021). Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Water Research, 188, 116513 https://doi.org/10.1016/j.watres.2020.116513
  48. Zahavi, T., Cohen, L., Weiss, B., Schena, L., Daus, A., Kaplunov, T., & Droby, S. (2000). Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biology and Technology, 20(2), 115-124. https://doi.org/10.1016/S0925-5214(00)00118-6
  49. Zhou, D., Li, T., Cong, K., Suo, A., & Wu, C. (2022). Influence of cold plasma on quality attributes and aroma compounds in fresh-cut cantaloupe during low temperature storage. Food Science and Technology, 154, 112893. https://doi.org/10.1016/j.lwt.2021.112893
  50. Ziuzina, D., Misra, N. N., Han, L., Cullen, P. J., Moiseev, T., Mosnier, J. P., & Bourke, P. (2020). Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science & Emerging Technologies, 59, 102229. https://doi.org/10.1016/j.ifset.2019.102229
  51. Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109-116. https://doi.org/10.1016/j.fm.2014.02.007
CAPTCHA Image