با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مکانیزاسیون کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان، ایران

2 گروه مهندسی ماشین‌های کشاورزی و مکانیزاسیون، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان، ایران

3 گروه اقتصاد کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان، ایران

چکیده

فن‌آوری‌های جدید مانند سم‌پاش‌های هوشمند، از مهم‌ترین عوامل تحول در بخش کشاورزی هستند. در این تحقیق یک سم‌پاش باغی نرخ ثابت به یک سم‌پاش باغی نرخ متغیر توسعه داده شد و مورد ارزیابی و مقایسه قرار گرفت. بررسی مقدار نشست سم در دو حالت سم‌پاشی نرخ متغیر و نرخ ثابت و در سه سرعت‌پیشروی کم (1.6)، متوسط (3.2) و زیاد (4.8 کیلومتر بر ساعت) انجام شد. کم‌ترین مقدار نشست سم روی درختان به‌ترتیب در حالت سم‌پاشی نرخ متغیر در سرعت‌پیشروی 4.8 (1303 لیتر در هکتار) و بیش‌ترین مقدار نشست در حالت سم‌پاشی نرخ ثابت در سرعت‌پیشروی 1.6 کیلومتر بر ساعت (2121 لیتر در هکتار) به‌دست آمد. نتایج آزمون تجزیه واریانس برای مقدار نشست سم روی درختان، زمین، انتشار در هوا، کل مصرف سم در هکتار و کارایی پاشش نشان داد که مقدار این شاخص‌ها در دو حالت سم‌پاشی نرخ متغیر و نرخ ثابت دارای تفاوت معنی‌داری بود. در همه‌ی شاخص‌ها نوع سم‌پاش و سرعت پیشروی سم‌پاشی، اثر معنی‌داری بر تغییرات مقدار نشست سم در تیمارهای مختلف داشت. نتایج نشان داد که نوع سم‌پاش، سرعت پیشروی و اثر متقابل این دو عامل اثر معنی‌داری بر شاخص کیفیت پاشش نداشت. قطر میانه عددی و قطر میانه حجمی نیز در همه‌ی تیمارها تفاوت معنی‌داری نداشت. حداکثر مقدار صرفه‌جویی مصرف سم (46 درصد) در حالت سم‌پاشی نرخ متغیر و در سرعت‌پیشروی 1.6 کیلومتر بر ساعت و بیشترین مقدار کارایی پاشش (70 درصد) در حالت سم‌پاشی نرخ متغیر و در سرعت‌پیشروی 1.6 کیلومتر بر ساعت به‌دست آمد.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Asaei, H., Jafari, A., & Loghavi, M. (2019). Site-specific orchard sprayer equipped with machine vision for chemical usage management. Computers and Electronics in Agriculture162, 431-439. https://doi.org/10.1016/j.compag.2019.04.040
Balsari, P., Marucco, P., & Tamagnone, M. (2007). A test bench for the classification of boom sprayers according to drift risk. Crop Protection, 26(10), 1482-1489. https://doi.org/10.1016/j.cropro.2006.12.012
Baran, M. F., Lüle, F., & Gökdoğan, O. (2017). Energy input-output analysis of organic grape production: A case study from Adiyaman province. Erwerbs-Obstbau59(4), 275-279. https://doi.org/10.1007/s10341-017-0322-1
Behzadipour, F., Ghaseminejad Raini, M., Asodar, M. A., Marzban, A., & Abdanan Mehdizadeh, S. (2017). Evaluation of technical factors of agricultural turbine spraying on spraying quality and droplet diameter by image processing. Jurnal of Agricultural Machinery, 7(1), 61-72. (in Persian). https://doi.org/10.22067/jam.v7i1.48194
Berenstein, R., Shahar, O. B., Shapiro, A., & Edan, Y. (2010). Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intelligent Service Robotics3, 233-243. https://doi.org/10.1007/s11370-010-0078-z
Carman, G. E., Iwata, Y., & Gunther, F. A. (1977). Pesticide deposition on citrus orchard soil resulting from spray drift and runoff. Bulletin of Environmental Contamination and Toxicology, 18, 706-710.
Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security6(2), 48-60. https://doi.org/10.1002/fes3.108
Chen, L., Wallhead, M., Reding, M., Horst, L., & Zhu, H. (2020). Control of insect pests and diseases in an Ohio fruit farm with a laser-guided intelligent sprayer. HortTechnology30(2), 168-175. https://doi.org/10.21273/HORTTECH04497-19
Chen, Y., Ozkan, H. E., Zhu, H., Derksen, R. C., & Krause, C. R. (2013). Spray deposition inside tree canopies from a newly developed variable-rate air-assisted sprayer. Transactions of the ASABE56(6), 1263-1272.
Ciacci, L., & Passarini, F. (2020). Life cycle assessment (LCA) of environmental and energy systems. Energies13(22), 5892. https://doi.org/10.3390/en13225892
Cobbenhagen, A. T. J. R., Antunes, D. J., van de Molengraft, M. J. G., & Heemels, W. P. M. H. (2021). Opportunities for control engineering in arable precision agriculture. Annual Reviews in Control51, 47-55. https://doi.org/10.1016/j.arcontrol.2021.01.001
Cunningham, G. P., & Harden, J. (1998). Reducing spray volumes applied to mature citrus trees. Crop Protection, 17(4), 289-292. https://doi.org/10.1016/S0261-2194(98)00007-6
Dou, H., Zhang, C., Li, L., Hao, G., Ding, B., Gong, W., & Huang, P. (2018, September). Application of variable spray technology in agriculture. In IOP Conference Series: Earth and Environmental Science (Vol. 186, No. 5, p. 012007). IOP Publishing. https://doi.org/10.1088/1755-1315/186/5/012007
El Bilali, H., Callenius, C., Strassner, C., & Probst, L. (2019). Food and nutrition security and sustainability transitions in food systems. Food and Energy Security8(2), e00154. https://doi.org/10.1002/fes3.154
Escolà, A., Rosell-Polo, J. R., Planas, S., Gil, E., Pomar, J., Camp, F., ... & Solanelles, F. (2013). Variable rate sprayer. Part 1–Orchard prototype: Design, implementation and validation. Computers and Electronics in Agriculture95, 122-135. https://doi.org/10.1016/j.compag.2013.02.004
Garcerá, C., Moltó, E., & Chueca, P. (2017). Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses. Science of the Total Environment599, 1344-1362. https://doi.org/10.1016/j.scitotenv.2017.05.029
Gil, E., & Escolà, A. (2009). Design of a decision support method to determine volume rate for vineyard spraying. Applied Engineering in Agriculture25(2), 145-151. https://doi.org/10.13031/2013.26323
Gil, E., Llorens, J., Llop, J., Fàbregas, X., & Gallart, M. (2013). Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Sensors13(1), 516-534. https://doi.org/10.3390/s130100516
Gil, E., Llorens, J., Llop, J., Fàbregas, X., Escolà, A., & Rosell-Polo, J. R. (2013). Variable rate sprayer. Part 2–Vineyard prototype: Design, implementation, and validation. Computers and Electronics in Agriculture95, 136-150. https://doi.org/10.1016/j.compag.2013.02.010
Ilica, A., & Boz, A. F. (2018). Design of a nozzle-height control system using a permanent magnet tubular linear synchronous motor. Journal of Agricultural Sciences24(3), 374-385. https://doi.org/10.15832/ankutbd.456662
Kasner, E. J., Fenske, R. A., Hoheisel, G. A., Galvin, K., Blanco, M. N., Seto, E. Y., & Yost, M. G. (2018). Spray drift from a conventional axial fan airblast sprayer in a modern orchard work environment. Annals of Work Exposures and Health62(9), 1134-1146. https://doi.org/10.1093/annweh/wxy082
Khairy, M. F. A., Zaalouk, A. K., Rasmi, A. S., & Othman, Y. K. (2020). A prototype for spraying pesticide using vision technique. Misr Journal of Agricultural Engineering37(3), 249-262. https://doi.org/10.21608/mjae.2020.103153
Landers, A. J. (2008). Innovative technologies for the precise application of pesticides in orchards and vineyards. International Advances in Pesticide Application, Robinson College, Cambridge, UK, 9-11 January 2008, 411-416.
Lindgren, E., Harris, F., Dangour, A. D., Gasparatos, A., Hiramatsu, M., Javadi, F., ... & Haines, A. (2018). Sustainable food systems—a health perspective. Sustainability science13, 1505-1517. https://doi.org/10.1007/s11625-018-0586-x
Llorens, J., Gil, E., Llop, J., & Escolà, A. (2010). Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency. Crop Protection29(3), 239-248. https://doi.org/10.1016/j.cropro.2009.12.022
Mahmud, M. S., Zahid, A., He, L., Choi, D., Krawczyk, G., Zhu, H., & Heinemann, P. (2021). Development of a LiDAR-guided section-based tree canopy density measurement system for precision spray applications. Computers and Electronics in Agriculture182, 106053. https://doi.org/10.1016/j.compag.2021.106053
Mamane, A., Raherison, C., Tessier, J. F., Baldi, I., & Bouvier, G. (2015). Environmental exposure to pesticides and respiratory health. European Respiratory Review24(137), 462-473. https://doi.org/10.1183/16000617.00006114
Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R., & Cerdeira-Estrada, S. (2019). Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Computers and Electronics in Agriculture167, 105101. https://doi.org/10.1016/j.compag.2019.105101
Mooney, D. F., Larson, J. A., Roberts, R. K., & English, B. C. (2009). Economics of the variable rate technology investment decision for agricultural sprayers (No. 1369-2016-108610). https://doi.org/10.22004/ag.econ.46860
Naseri, M., Abbaspour Fard, M. H., Chaji, H., & Heydarzadeh, A. (2007). Analysis of the effect of nozzle orifice diameter, pump pressure and tractor forward speed on spraying uniformity in agricultural turbine sprayer (turboliner). The 5th National Congress of Agricultural Machines and Mechanization of Iran. Ferdasi University of Mashhad. P. 9. (in Persian).
Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Tona, E., ... & Ulbrich, H. (2016). Selective spraying of grapevines for disease control using a modular agricultural robot. Biosystems Engineering146, 203-215. https://doi.org/10.1016/j.biosystemseng.2015.12.004
Pergher, G. (2001). Recovery rate of tracer dyes used for spray deposit assessment. Transactions of the ASAE44(4), 787. https://doi.org/10.13031/2013.6240
Pimentel, D., & Lehman, H. (Eds.). (1993). The pesticide question: Environment, economics and ethics. Springer Science & Business Media.
Rathnayake, A. P., Chandel, A. K., Schrader, M. J., Hoheisel, G. A., & Khot, L. R. (2021). Spray patterns and perceptive canopy interaction assessment of commercial airblast sprayers used in Pacific Northwest perennial specialty crop production. Computers and Electronics in Agriculture184, 106097. https://doi.org/10.1016/j.compag.2021.106097
Rodrigo, M. A., Oturan, N., & Oturan, M. A. (2014). Electrochemically assisted remediation of pesticides in soils and water: a review. Chemical Reviews114(17), 8720-8745. https://doi.org/10.1021/cr500077e
Safari, M., Amirsheghaghi, F., Loveymi, N., & Chagi, H. (2009). Assessment of common sprayer used in wheat fields. Karaj Agricultural Engineering Research Institute Publications, 10(4), 1-12. (In Persian).
Shafii, A. 2008. Principles of agricultural machinery. Tehran University Publications. Third edition. 498 pages (in Farsi).
Shen, Y., Zhu, H., Liu, H., Chen, Y., & Ozkan, E. (2017). Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer. Transactions of the ASABE60(6), 1827-1838. https://doi.org/10.13031/trans.12455
Soheilifard, F., Marzban, A., Raini, M. G., Taki, M., & van Zelm, R. (2020). Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses. Science of the Total Environment732, 139118. https://doi.org/10.1016/j.scitotenv.2020.139118
Solanelles, F., Escolà, A., Planas, S., Rosell, J. R., Camp, F., & Gràcia, F. (2006). An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosystems Engineering95(4), 473-481. https://doi.org/10.1016/j.biosystemseng.2006.08.004
Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., ... & Willett, W. (2018). Options for keeping the food system within environmental limits. Nature562(7728), 519-525. https://doi.org/10.1038/s41586-018-0594-0
Subramanian, V., Burks, T. F., & Arroyo, A. A. (2006). Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Computers and Electronics in Agriculture53(2), 130-143. https://doi.org/10.1016/j.compag.2006.06.001
Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy135, 405-412. https://doi.org/10.1016/j.energy.2017.06.089
Tewari, V. K., Chandel, A. K., Nare, B., & Kumar, S. (2018). Sonar sensing predicated automatic spraying technology for orchards. Current Science115(6), 1115-1123.
Yadav, G. S., Das, A., Lal, R., Babu, S., Datta, M., Meena, R. S., ... & Singh, R. (2019). Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agriculture, Ecosystems & Environment275, 81-92. https://doi.org/10.1016/j.agee.2019.02.001
Zaman, Q. U., Esau, T. J., Schumann, A. W., Percival, D. C., Chang, Y. K., Read, S. M., & Farooque, A. A. (2011). Development of prototype automated variable rate sprayer for real-time spot-application of agrochemicals in wild blueberry fields. Computers and Electronics in Agriculture76(2), 175-182. https://doi.org/10.1016/j.compag.2011.01.014
Zürey, Z., Balci, S., & Sabanci, K. (2020). Automatic nozzle control system with ultrasonic sensor for orchard sprayers. European Journal of Technique (EJT)10(2), 264-273. https://doi.org/10.36222/ejt.715015
CAPTCHA Image