با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیزاسیون، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه مهندسی ماشین‌های کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

بارهای زیست‌محیطی ناشی از تولید و خدمات مختلف به‌نوبه خود منجر به بروز هزینه‌هایی می‌شوند که اگرچه در حسابداری‌ها مورد توجه قرار نمی‌گیرند، به جامعه تحمیل شده و اصول توسعه پایدار در تولید و خدمات را به چالش می‌کشند. با توجه به این حقیقت، هدف از پژوهش حاضر بررسی هزینه‌های تحمیل‌شده ناشی از بارهای زیست‌محیطی در چرخه زندگی تولید آب‌میوه انار است. هزینه‌های مورد بررسی در این پژوهش، هزینه‌های اجتماعی نشر کربن، هزینه خسارت به کیفیت هوا و هزینه‌های پیش‌گیرانه زیست‌محیطی در نظر گرفته‌ شده‌اند. در این راستا، شرکت سامان بازار رضوی در مشهد به‌عنوان مطالعه موردی انتخاب و بارهای زیست‌محیطی مربوط به تولید آب‌میوه انار، با استفاده از رویکرد ارزیابی چرخه زندگی محاسبه شد. متعاقباً هزینه‌های ناشی از بارهای زیست‌محیطی تولید آب‌میوه انار مورد بررسی قرار گرفت. نتایج میزان هزینه اجتماعی نشر کربن، هزینه کل خسارت به هوا و هزینه‌های پیش‌گیرانه زیست‌محیطی به ازای تولید آب‌میوه پاکتی 160 گرمی را به‌ترتیب برابر 0.0062، 0.021 و 0.026 دلار نشان داد. این پژوهش مهم‌ترین عوامل مؤثر بر ایجاد هزینه‌های مربوط به بارهای زیست‌محیطی ناشی از تولید آب‌میوه انار را گاز طبیعی و الکتریسیته معرفی و توصیه به استفاده از جایگزین‌های پایدارتری برای این نهاده‌ها نمود.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Awuni, S., Adarkwah, F., Ofori, B. D., Purwestri, R. C., Huertas Bernal, D. C., & Hajek, M. (2023). Managing the challenges of climate change mitigation and adaptation strategies in Ghana. Heliyon, 9(5), e15491. https://doi.org/10.1016/j.heliyon.2023.e15491
  2. Badakhshan, N., Shahriar, K., Afraei, S., & Bakhtavar, E. (2023). Determining the environmental costs of mining projects: A comprehensive quantitative assessment. Resources Policy, 82, 103561. https://doi.org/10.1016/j.resourpol.2023.103561
  3. Behrooznia, L., Sharifi, M., Mousavi-Avval, S. H., Hosseinzadeh-Bandbafha, H. (2019). Estimation of energy consumption and environmental ECO-costs of compost production from municipal solid waste in Rasht. Iranian Journal of Biosystems Engineering, 50(1), 43-55. https://dorl.net/dor/20.1001.1.20084803.1398.50.1.4.6
  4. Chang, F., Fabian-Wheeler, E., Richard, T. L., & Hile, M. (2023). Compaction effects on greenhouse gas and ammonia emissions from solid dairy manure. Journal of Environmental Management, 332, 117399. https://doi.org/10.1016/j.jenvman.2023.117399
  5. Chen, C., Pinar, M., & Stengos, T. (2022). Renewable energy and CO2 emissions: New evidence with the panel threshold model. Renewable Energy, 194, 117-128. https://doi.org/10.1016/j.renene.2022.05.095
  6. Čuček, L., Klemeš, J. J., & Kravanja, Z. (2015). Chapter 5- Overview of environmental footprints. In J. J. Klemeš (Ed.), Assessing and Measuring Environmental Impact and Sustainability (pp. 131–193). Oxford: Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-799968-5.00005-1
  7. de Jesús Vargas‐Soplín, A., Prochnow, A., Herrmann, C., Tscheuschner, B., & Kreidenweis, U. (2022). The potential for biogas production from autumn tree leaves to supply energy and reduce greenhouse gas emissions– A case study from the city of Berlin. Resources, Conservation and Recycling, 187, 106598. https://doi.org/10.1016/j.resconrec.2022.106598
  8. (2019). Air quality damage cost guidance. Department of Environment, Food and Rural Affairs (Defra), London.
  9. Dilling, L., Doney, S. C., Edmonds, J., Gurney, K. R., Harriss, R., Schimel, D., Stephens, B., & Stokes, G. (2003). The role of carbon cycle observations and knowledge in carbon management. Annual Review of Environment and Resources, 28(1), 521-558. https://doi.org/10.1146/annurev.energy.28.011503.163443
  10. Ecocostsvalue. (2022). ecocostsvalue.com
  11. El Barnossi, A., Moussaid, F., & Iraqi Housseini, A. (2021). Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnology Reports, 29, e00574. https://doi.org/10.1016/j.btre.2020.e00574
  12. Esmaeilpour Troujeni, M., Emadi, B., Khojastehpour, & M., Vahedi, A. (2014). Analysis of energy flow in pomegranate fruit production- case study: Behshahr city. The first national conference on new and clean energy management. Hamadan. https://civilica.com/doc/307957
  13. Fathollahi, H., Mousavi-Avval, S. H., Akram, A., & Rafiee, S. (2018). Comparative energy, economic and environmental analyses of forage production systems for dairy farming. Journal of Cleaner Production, 182, 852-862. https://doi.org/10.1016/j.jclepro.2018.02.073
  14. Ghasemi-Mobtaker, H., Kaab, A., & Rafiee, S. (2020). Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy, 193, 116768. https://doi.org/10.1016/j.energy.2019.116768
  15. Gigliotti, M., Schmidt-Traub, G., & Bastianoni, S. (2019). The Sustainable Development Goals. In B. Fath (Ed.), Encyclopedia of Ecology (Second Edition) (Second Edi, pp. 426-431). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10986-8
  16. Hosseinzadeh-Bandbafha, H., Aghbashlo, M., & Tabatabaei, M. (2021). Life cycle assessment of bioenergy product systems: a critical review. E-Prime, 100015. https://doi.org/10.1016/j.prime.2021.100015
  17. (2006). IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan.
  18. (2006). 14040 International standard. Environmental Management–Life Cycle Assessment–Principles and Framework, International Organisation for Standardization, Geneva, Switzerland.
  19. Khanali, M., Kokei, D., Aghbashlo, M., Nasab, F. K., Hosseinzadeh-Bandbafha, H., & Tabatabaei, M. (2020). Energy flow modeling and life cycle assessment of apple juice production: Recommendations for renewable energies implementation and climate change mitigation. Journal of Cleaner Production, 246, 118997. https://doi.org/10.1016/j.jclepro.2019.118997
  20. Khezri, M., Heshmati, A., & Khodaei, M. (2022). Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 Applied Energy, 306, 117948. https://doi.org/10.1016/j.apenergy.2021.117948
  21. Kiba, T., & Krapp, A. (2016). Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture. Plant and Cell Physiology, 57(4), 707-714. https://doi.org/10.1093/pcp/pcw052
  22. Korberg, A. D., Skov, I. R., & Mathiesen, B. V. (2020). The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy, 199, 117426. https://doi.org/10.1016/j.energy.2020.117426
  23. Landgraf, M., Zeiner, M., Knabl, D., & Corman, F. (2022). Environmental impacts and associated costs of railway turnouts based on Austrian data. Transportation Research Part D: Transport and Environment, 103, 103168. https://doi.org/10.1016/j.trd.2021.103168
  24. Lavoro, A., Falzone, L., Gattuso, G., Salemi, R., Cultrera, G., Leone Marco, G., Scandurra, G., Candido, S., & Libra, M. (2021). Pomegranate: A promising avenue against the most common chronic diseases and their associated risk factors (Review). International Journal of Functional Nutrition, 2(2), 6. https://doi.org/10.3892/ijfn.2021.16
  25. Li, H., Xie, S., Zhang, X., Xia, Y., Zhang, Y., & Wang, L. (2021). Mid-pregnancy consumption of fruit, vegetable and fruit juice and the risk of gestational diabetes mellitus: A correlation study. Clinical Nutrition ESPEN, 46, 505-509. https://doi.org/10.1016/j.clnesp.2021.08.033
  26. Li, X., Hussain, S. A., Sobri, S., & Md Said, M. S. (2021). Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere, 271, 129502. https://doi.org/10.1016/j.chemosphere.2020.129502
  27. Longo, S., Mistretta, M., Guarino, F., & Cellura, M. (2017). Life Cycle Assessment of organic and conventional apple supply chains in the North of Italy. Journal of Cleaner Production, 140, 654-663. https://doi.org/10.1016/j.jclepro.2016.02.049
  28. McIntosh, A., & Pontius, J. (2017). Chapter 1- Tools and Skills. In A. McIntosh & J. Pontius (Eds.), Science and the Global Environment (pp. 1–112). Boston: Elsevier. https://doi.org/10.1016/B978-0-12-801712-8.00001-9
  29. Melgarejo, P., Núñez-Gómez, D., Legua, P., Martínez-Nicolás, J. J., & Almansa, M. S. (2020). Pomegranate (Punica granatum) a dry pericarp fruit with fleshy seeds. Trends in Food Science & Technology, 102, 232-236. https://doi.org/10.1016/j.tifs.2020.02.014
  30. Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., Smith, C. Z., Freel, K., Moy, J., Louis, L. V, Barba, E. W., Bettinger, K., Frazier, A. G., Colburn IX, J. F., Hanasaki, N., Hawkins, E., Hirabayashi, Y., Knorr, W., Little, C. M., …, & Hunter, C. L. (2018). Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change, 8(12), 1062-1071. https://doi.org/10.1038/s41558-018-0315-6
  31. Morales-Mora, M. A., Rosa-Dominguez, E., Suppen-Reynaga, N., & Martinez-Delgadillo, S. A. (2012). Environmental and eco-costs life cycle assessment of an acrylonitrile process by capacity enlargement in Mexico. Process Safety and Environmental Protection, 90(1), 27-37. https://doi.org/10.1016/j.psep.2011.10.002
  32. Nandi, S., Ahmed, S., & Khurpade, P. D. (2023). Chapter 5- Anaerobic digestion of fruit and vegetable waste for biogas and other biofuels. In S. A. Mandavgane, I. Chakravarty, & A. K. Jaiswal (Eds.), Fruit and Vegetable Waste Utilization and Sustainability (pp. 101–119). Academic Press. https://doi.org/10.1016/B978-0-323-91743-8.00007-1
  33. Nemecek, T., & Kagi, T. (2007). Life cycle inventories of agricultural production systems. Final report ecoinvent v2. 0 No. 15. Swiss center for life cycle inventories, Dübendorf, Switzerland.
  34. Ng, K. H., Lai, S. Y., Jamaludin, N. F. M., & Mohamed, A. R. (2022). A review on dry-based and wet-based catalytic sulphur dioxide (SO2) reduction technologies. Journal of Hazardous Materials, 423, 127061. https://doi.org/10.1016/j.jhazmat.2021.127061
  35. O’Shea, R., Lin, R., Wall, D. M., Browne, J. D., & Murphy, J. D. (2020). Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Applied Energy, 279, 115812. https://doi.org/10.1016/j.apenergy.2020.115812
  36. Papong, S., Rewlay-ngoen, C., Itsubo, N., & Malakul, P. (2017). Environmental life cycle assessment and social impacts of bioethanol production in Thailand. Journal of Cleaner Production, 157, 254-266. https://doi.org/10.1016/j.jclepro.2017.04.122
  37. Pinto, E. P., Perin, E. C., Schott, I. B., Düsman, E., da Silva Rodrigues, R., Lucchetta, L., Manfroi, V., & Rombaldi, C. V. (2022). Phenolic compounds are dependent on cultivation conditions in face of UV-C radiation in ‘Concord’ grape juices (Vitis labrusca). LWT, 154, 112681. https://doi.org/10.1016/j.lwt.2021.112681
  38. Rahil, A., Gammon, R., Brown, N., Udie, J., & Mazhar, M. U. (2019). Potential economic benefits of carbon dioxide (CO2) reduction due to renewable energy and electrolytic hydrogen fuel deployment under current and long term forecasting of the Social Carbon Cost (SCC). Energy Reports, 5, 602-618. https://doi.org/10.1016/j.egyr.2019.05.003
  39. Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingenroth, J., Cooke, R., Parthum, B., Smith, D., Cromar, K., Diaz, D., Moore, F. C., Müller, U. K., Plevin, R. J., Raftery, A. E., Ševčíková, H., Sheets, H., …, & Anthoff, D. (2022). Comprehensive evidence implies a higher social cost of CO2. Nature, 610(7933), 687-692. https://doi.org/10.1038/s41586-022-05224-9
  40. Singh, N. V., Parashuram, S., Sharma, J., Potlannagari, R. S., Karuppannan, D. B., Pal, R. K., Patil, P., Mundewadikar, D. M., Sangnure, V. R., Parvati Sai Arun, P. V, Mutha, N. V. R., Kumar, B., Tripathi, A., Peddamma, S. K., Kothandaraman, H., Yellaboina, S., Baghel, D. S., & Reddy, U. K. (2020). Comparative transcriptome profiling of pomegranate genotypes having resistance and susceptible reaction to Xanthomonas axonopodis pv. punicae. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2020.07.023
  41. (2023). Statistics of Ministry of Agriculture Jahad, Iran.
  42. Staudt, A., Huddleston, N., & Kraucunas, I. (2008). Understanding and Responding to Climate Change: Highlights of National Academies Reports. https://www.preventionweb.net/quick/3915
  43. Talekar, S., Patti, A. F., Vijayraghavan, R., & Arora, A. (2018). An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. Bioresource Technology, 266, 322-334. https://doi.org/10.1016/j.biortech.2018.06.072
  44. Vogtlander, J. (2010). LCA-based assessment of sustainability: the Eco-costs/Value Ratio EVR.
  45. Vogtländer, J. G., Bijma, A., & Brezet, H. C. (2002). Communicating the eco-efficiency of products and services by means of the eco-costs/value model. Journal of Cleaner Production, 10(1), 57-67. https://doi.org/10.1016/S0959-6526(01)00013-0
  46. Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167. https://doi.org/10.1016/j.ese.2022.100167
  47. Zarei, M. J., Kazemi, N., & Marzban, A. (2019). Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse. Journal of the Saudi Society of Agricultural Sciences, 18(3), 249-255. https://doi.org/10.1016/j.jssas.2017.07.001
  48. Zhang, Q., Zhu, J., Mulder, J., Wang, Q., Liu, C., & He, N. (2023). High environmental costs behind rapid economic development: Evidence from economic loss caused by atmospheric acid deposition. Journal of Environmental Management, 334, 117511. https://doi.org/10.1016/j.jenvman.2023.117511
  49. Zhao, S., Deng, K., Zhu, Y., Jiang, T., Wu, P., Feng, K., & Li, L. (2023). Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch. Journal of Integrative Agriculture, 22(4), 1045-1057. https://doi.org/10.1016/j.jia.2023.01.005
CAPTCHA Image