با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه دانشگاه مازندران، بابلسر، ایران

4 گروه بیولوژی مولکولی و گروه انگل شناسی و قارچ شناسی پزشکی، دانشکده بهداشت، دانشگاه علوم پزشکی، تهران، تهران، ایران

چکیده

کپک سبز و آبی عوامل محدودکننده دوره انبارداری بسیاری از میوه‌ها و سبزی‌ها از جمله مرکبات می‌باشد. در این تحقیق اثر پلاسمای سرد فشار اتمسفری تولیدشده توسط تخلیه اسپارک گذرا جریان مستقیم در یک راکتور بسته بر روی سوسپانسیون قارچ پنی‌سیلیوم دیجیتاتوم بررسی شد. سوسپانسیون با غلظت‌های اولیه متفاوت شامل: صفر، پنج صدم، یک دهم و پنج دهم درصد پراکسیدهیدروژن در زمان‌های مختلف معرض پلاسما 2.5، 5، 10 و 15 دقیقه تحت پلاسمادهی قرار داده شدند. نتایج نشان داد که با افزایش زمان پلاسمادهی و نیز غلظت پراکسیدهیدروژن محلول اثر غیرفعال‌سازی اسپورهای قارچ افزایش یافت. در غلظت‌های یک و پنج دهم درصد میزان توقف کامل اسپورها در زمان 15 دقیقه پلاسمادهی مشاهده شد. پلاسمادهی توانست سبب افزایش اکسیداسیون محلول شده و در نتیجه منجر به مرگ سلولی بیشتر اسپورها شد. بنابراین استفاده از پلاسمای سرد موجب می‌شود که استفاده از محلول‌های با غلظت بالای پراکسیدهیدروژن در هنگام شستشوی میوه‌ها و سبزی‌ها به‌منظور حفظ خواص پس از برداشت آن‌ها در مقیاس صنعتی اجتناب شود.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Bekeschus, S., Kolata, J., Winterbourn, C., Kramer, A., Turner, R., Weltmann, K., Bröker, B., & Masur, K. (2014). Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Research, 48(5), 542-549. https://doi.org/10.3109/10715762.2014.892937
  2. Bruggeman, P., & Schram, D. C. (2010). On OH production in water containing atmospheric pressure plasmas. Plasma Sources Science and Technology, 19(4). https://doi.org/10.1088/0963-0252/19/4/045025
  3. Graves, D. B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics, 45(26), 263001. https://doi.org/10.1088/0022-3727/45/26/263001
  4. Hao, X., Mattson, A. M., Edelblute, C. M., Malik, M. A., Heller, L. C., & Kolb, J. F. (2014). Nitric oxide generation with an air operated non‐thermal plasma jet and associated microbial inactivation mechanisms. Plasma Processes and Polymers, 11(11), 1044-1056. https://doi.org/10.1002/ppap.201300187
  5. Iseki, S., Hashizume, H., Jia, F., Takeda, K., Ishikawa, K., Ohta, T., Ito, M., & Hori, M. (2011). Inactivation of Penicillium digitatum spores by a high-density ground-state atomic oxygen-radical source employing an atmospheric-pressure plasma. Applied Physics Express, 4(11), 116201. https://doi.org/10.1143/APEX.4.116201
  6. Ito, M., Oh, J. S., Ohta, T., Shiratani, M., & Hori, M. (2018). Current status and future prospects of agricultural applications using atmospheric‐pressure plasma technologies. Plasma Processes and Polymers, 15(2), 1700073. https://doi.org/10.1002/ppap.201700073
  7. Ito, M., Ohta, T., & Hori, M. (2012). Plasma agriculture. Journal of the Korean Physical Society, 60, 937-943. https://doi.org/10.3938/jkps.60.937
  8. Lee, H. W., Lee, H., Kang, S., Kim, H., Won, I., Jeon, S., & Lee, J. (2013). Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions. Plasma Sources Science and Technology, 22(5), 055.008. https://doi.org/10.1088/0963-0252/22/5/055008
  9. Lee, K. N., Paek, K. H., Ju, W. T., & Lee, Y. H. (2006). Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. Journal of Microbiology, 44(3), 269-275.
  10. Liu, F., Sun, P., Bai, N., Tian, Y., Zhou, H., Wei, S., Zhou, Y., Zhang, J., Zhu, W., & Becker, K. (2010). Inactivation of bacteria in an aqueous environment by a direct current, cold atmospheric pressure air plasma microjet. Plasma Processes and Polymers, 7(3-4), 231-236. https://doi.org/10.1002/ppap.200900070
  11. Liu, K., Wang, C., Hu, H., Lei, J., & Han, L. (2016). Indirect treatment effects of water–air MHCD jet on the inactivation of Penicillium Digitatum suspension. IEEE Transactions on Plasma Science, 44(11), 2729-2737. https://doi.org/10.1109/TPS.2016.2608926
  12. Liu, Z., Zhou, C., Liu, D., He, T., Guo, L., Xu, D., & Kong, M. G. (2019). Quantifying the concentration and penetration depth of long-lived RONS in plasma-activated water by UV absorption spectroscopy. AIP Advances, 9(1), 015014. https://doi.org/10.1063/1.5037660
  13. Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., & Fang, J. (2015). Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials, 300, 643-651. https://doi.org/10.1016/j.jhazmat.2015.07.061
  14. Maeda, Y., Igura, N., Shimoda, M., & Hayakawa, I. (2003). Bactericidal effect of atmospheric gas plasma on Escherichia coli K12. International Journal of Food Science and Technology, 38(8), 889-892.
  15. Merenyi, G., Lind, J., Naumov, S., & Sonntag, C. V. (2010). Reaction of ozone with hydrogen peroxide (peroxone process): a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations. Environmental Science & Technology, 44(9), 3505-3507. https://doi.org/10.1021/es100277d
  16. Misra, N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., & Cullen, P. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115-121. https://doi.org/10.1016/j.foodhyd.2014.08.019
  17. Misra, N., Schlüter, O., & Cullen, P. (2016). Plasma in food and agriculture. In Cold plasma in food and agriculture (pp. 1-16). Elsevier. https://doi.org/10.1016/B978-0-12-801365-6.00001-9
  18. Naïtali, M., Kamgang-Youbi, G., Herry, J. M., Bellon-Fontaine, M. N., & Brisset, J. L. (2010). Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Applied and Environmental Microbiology, 76(22), 7662-7664. https://doi.org/10.1128/AEM.01615-10
  19. NOP. (2003). National Organic Program, Federal Register
  20. Ohta, T., Ito, M., Iseki, S., & Hori, M. (2010). Inactivation mechanism of Penicillium digitatum using atmospheric pressure plasma. TENCON 2010-2010 IEEE Region 10 Conference. https://doi.org/10.1109/TENCON.2010.5685967
  21. Palou, L., Usall, J., Smilanick, J. L., Aguilar, M. J., & Vinas, I. (2002). Evaluation of food additives and low toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruit. Pest Management Science, 58(5), 459-466. https://doi.org/10.1002/ps.477
  22. Parish, M., Beuchat, L., Suslow, T., Harris, L., Garrett, E., Farber, J., & Busta, F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh cut produce. Comprehensive Reviews in Food Science and Food Safety, 2, 161-173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.x
  23. Park, G., Ryu, Y. H., Hong, Y. J., Choi, E. H., & Uhm, H. S. (2012). Cellular and molecular responses of Neurospora crassa to non-thermal plasma at atmospheric pressure. Applied Physics Letters, 100(6), 063703. https://doi.org/10.1063/1.3684632
  24. Puligundla, P., Lee, T., & Mok, C. (2018). Effect of intermittent corona discharge plasma treatment for improving microbial quality and shelf life of kumquat (Citrus japonica) fruits. LWT, 91, 8-13. https://doi.org/10.1016/j.lwt.2018.01.019
  25. Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., & Fang, J. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Scientific Reports, 6(1), 28505. https://doi.org/10.1038/srep28505
  26. Smilanick, J., Brown, G., & Eckert, J. (2006). The biology and control of postharvest diseases. Fresh Citrus Fruits, 339-396.
  27. Suslow, T. (1997). Postharvest Chlorination: Basic Properties & Key Points for Effective Distribution.
  28. Timoshkin, I. V., Maclean, M., Wilson, M. P., Given, M. J., MacGregor, S. J., Wang, T., & Anderson, J. G. (2012). Bactericidal effect of corona discharges in atmospheric air. IEEE Transactions on Plasma Science, 40(10), 232. https://doi.org/10.1109/TPS.2012.2193621
  29. Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 472001. https://doi.org/10.1088/0022-3727/44/47/472001
  30. Van Gils, C., Hofmann, S., Boekema, B., Brandenburg, R., & Bruggeman, P. (2013). Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal of Physics D: Applied Physics, 46(17), 175203. https://doi.org/10.1088/0022-3727/46/17/175203
  31. Wargenau, A., Fleißner, A., Bolten, C. J., Rohde, M., Kampen, I., & Kwade, A. (2011). On the origin of the electrostatic surface potential of Aspergillus niger spores in acidic environments. Research in Microbiology, 162(10), 1011-1017. https://doi.org/10.1016/j.resmic.2011.07.006
  32. Wu, S., Zhang, Q., Ma, R., Yu, S., Wang, K., Zhang, J., & Fang, J. (2017). Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water. The European Physical Journal Special Topics, 226(13), 2887-2899. https://doi.org/10.1140/epjst/e2016-60330-y
  33. Xu, D., Wang, B., Xu, Y., Chen, Z., Cui, Q., Yang, Y., Chen, H., & Kong, M. G. (2016). Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures. Scientific Reports, 6(1), 1-14. https://doi.org/10.1038/srep27872
  34. Yagyu, Y., Hatayama, Y., Hayashi, N., Mishima, T., Nishioka, T., Sakudo, A., Ihara, T., Ohshima, T., Kawasaki, H., & Suda, Y. (2016). Direct plasma disinfection of green mold spore on citrus by atmospheric pressure dielectric barrier discharge for agricultural applications. Transactions of the Materials Research Society of Japan, 41(1), 127-130. https://doi.org/10.14723/tmrsj.41.127
CAPTCHA Image