نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بو علی سینا، همدان، ایران
2 گروه مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه علم و صنعت، تهران، ایران
چکیده
در برخی کشورها، فندقها به دلیل محدودیتهای فناوری موجود و افزایش طول عمر نگهداریشان، معمولاً با پوسته مصرف میشوند. بنابراین، فندقهای خندان مشتری پسندی بالاتری دارند. در مقیاس نیمهصنعتی، فندقهای خندان و دهان بسته در حال حاضر از طریق بازرسی بصری از یکدیگر جدا میشوند. این مطالعه بهمنظور توسعه یک الگوریتم جدید برای جداسازی فندقهای خندان از فندقهای ترکخورده یا دهان بسته انجام شده است. در رویکرد اول، تکنیکهای کاهش بعد مانند روشهای مبتنی بر انتخاب ویژگی (SFFS) و تحلیل مؤلفه اصلی (PCA) برای انتخاب یا استخراج ترکیبی از ویژگیهای رنگ، بافت و خاکستری بهعنوان ورودی مدل استفاده شدند. در رویکرد دوم، ویژگیهای به شکل انفرادی مستقیماً بهعنوان ورودیها استفاده شدند. در این مطالعه، سه مدل معروف یادگیری ماشین، شامل ماشین بردار پشتیبان (SVM)، نزدیکترین همسایهها (KNN) و پرسپترون چندلایه (MLP) مورد استفاده قرار گرفتند. نتایج نشان داد که روش SFFS تأثیر بیشتری در بهبود عملکرد مدلها نسبت به روش PCA دارد. با این حال، تفاوت معنیداری بین عملکرد مدلهای توسعهیافته با ویژگیهای ترکیبی (98.00%) و عملکرد مدلهای با استفاده از ویژگیهای انفرادی (98.67%) وجود نداشت. نتایج کلی این مطالعه نشان داد که مدل MLP با یک لایه پنهان، دراپ اوت برابر با 0.3 و 10 نورون، با استفاده از ویژگی HOG بهعنوان ورودی، انتخاب خوبی برای طبقهبندی فندقها به دو دسته خندان و دهان بسته میباشد.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Çolak, A. B. (2021). A novel comparative investigation of the effect of the number of neurons on the predictive performance of the artificial neural network: An experimental study on the thermal conductivity of ZrO2International Journal of Energy Research, 45(13), 18944-18956. https://doi.org/101002/er6989
- FAOSTAT. (2021). Crops production data. http://wwwfaoorg/faostat/en/#data/QC. Accessed 20 March 2021
- Garcia-Allende, P. B., Mirapeix, J., Conde, O. M., Cobo, A., & Lopez-Higuera, J. M. (2009). Spectral processing technique based on feature selection and artificial neural networks for arc-welding quality monitoring. Ndt & E International, 42(1), 56-63. https://doi.org/101016/jndteint200807004
- Geler, Z., Kurbalija, V., Radovanović, M., & Ivanović, M. (2016). Comparison of different weighting schemes for the k NN classifier on time-series data. Knowledge and Information Systems, 48, 331-378. https://doi.org/101007/s10115-015-0881-0
- Giraudo, A., Calvini, R., Orlandi, G., Ulrici, A., Geobaldo, F., & Savorani, F. (2018). Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control, 94, 233-240. https://doi.org/101016/jfoodcont201807018
- Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology, 15(2), 965-980. https://doi.org/101007/s41870-019-00409-4
- Gou, J., Du, L., Zhang, Y., & Xiong, T. (2012). A new distance-weighted k-nearest neighbor classifier. Inf. Comput. Sci, 9(6), 1429-1436.
- Hallee, M. J., Napolitano, R. K., Reinhart, W. F., & Glisic, B. (2021). Crack detection in images of masonry using cnns. Sensors, 21(14), 4929. https://doi.org/103390/s21144929
- Heaton, J. (2008). Introduction to Neural Networks with Java. Heaton Research, Inc.
- Hosseinpour-Zarnaq, M., Omid, M., Taheri-Garavand, A., Nasiri, A., & Mahmoudi, A. (2022). Acoustic signal-based deep learning approach for smart sorting of pistachio nuts. Postharvest Biology and Technology, 185, 111778.
- Ibba, P., Tronstad, C., Moscetti, R., Mimmo, T., Cantarella, G., Petti, L., ... & Lugli, P. (2021). Supervised binary classification methods for strawberry ripeness discrimination from bioimpedance data. Scientific Reports, 11(1), 11202. https://doi.org/10.1038/s41598-021-90471-5
- Jolliffe, I. T. (2002). Principal component analysis for special types of data(pp. 338-372). Springer New York. https://doi.org/10.1007/0-387-22440-8_13
- Kalkan, H., & Yardimci, Y. (2006, September). Classification of hazelnut kernels by impact acoustics. In 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing (pp. 325-330). IEEE. https://doi.org/101109/MLSP2006275569
- Komal, K., & Sonia, D. (2019). GLCM algorithm and SVM classification method for Orange fruit quality assessment. International Journal of Engineering Research & Technology (IJERT), 8(9), 697-703.
- Lashgari, M., Imanmehr, A., & Tavakoli, H. (2020). Fusion of acoustic sensing and deep learning techniques for apple mealiness detection. Journal of Food Science and Technology, 57, 2233-2240. https://doi.org/101007/s13197-020-04259-y
- Li, J., Lu, H., & Liu, X. (2014). Feature selection method based on SFFS and SVM for facial expression recognition. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. xxx-xxx). IEEE. https://doi.og/10.1109/SMC.2014.6974454
- Liu, Y., Starzyk, J. A., & Zhu, Z. (2007). Optimizing number of hidden neurons in neural networks. EeC, 1(1), 6.
- Lu, F., Wang, D., Wu, H., & Xie, W. (2016). A multi-classifier combination method using sffs algorithm for recognition of 19 human activities. In Computational Science and Its Applications–ICCSA 2016: 16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part II 16 (pp. 519-529). Springer International Publishing. https://doi.org/101007/978-3-319-42108-7_40
- Luo, T., Zhao, J., Gu, Y., Zhang, S., Qiao, X., Tian, W., & Han, Y. (2023). Classification of weed seeds based on visual images and deep learning. Information Processing in Agriculture, 10(1), 40-51. https://doi.org/10.1016/j.inpa.2021.10.002
- Manekar, V., & Waghmare, K. (2014). Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO). International Journal of Advanced Computer Research, 4(3), 808.
- Menesatti, P., Costa, C., Paglia, G., Pallottino, F., D'Andrea, S., Rimatori, V., & Aguzzi, J. (2008). Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystems Engineering, 101(4), 417-424. https://doi.org/101016/jbiosystemseng200809013
- Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., & Zhang, Y. D. (2020). Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biology and Technology, 166, 111204. https://doi.org/10.1016/j.postharvbio.2020.111204
- Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339-4347. https://doi.org/10.1016/j.eswa.2010.09.103
- Pourdarbani, R., Sabzi, S. (2022). Detection of Cucumber Fruits with Excessive Consumption of Nitrogen using Hyperspectral imaging (With Emphasis on Sustainable Agriculture). Journal of Environmental Sciences Studies, 7(4), 5485-5492. https://doi.org/1022034/JESS2022153495
- Pourreza, A., Pourreza, H., Abbaspour-Fard, M. H., & Sadrnia, H. (2012). Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture, 83, 102-108. https://doi.org/10.1016/j.compag.2012.02.005
- Shojaeian, A., Bagherpour, H., Bagherpour, R., Parian, J. A., Fatehi, F., & Taghinezhad, E. (2023). The Potential Application of Innovative Methods in Neural Networks for Surface Crack Recognition of Unshelled Hazelnut. Journal of Food Processing and Preservation, 2023(1), 2177724. https://doi.org/10.1155/2023/2177724
- Singh, S., & Singh, N. P. (2019). Machine learning-based classification of good and rotten apple. In Recent Trends in Communication, Computing, and Electronics: Select Proceedings of IC3E 2018(pp. 377-386). Springer Singapore. https://doi.org/101007/978-981-13-2685-1_36
- Tan, S. S., Hoon, G. K., Yong, C. H., Kong, T. E., & Lin, C. S. (2005). Mapping search results into self-customized category hierarchy. In Intelligent Information Processing II: IFIP TC12/WG12. 3 International Conference on Intelligent Information Processing (IIP2004) October 21–23, 2004, Beijing, China 2 (pp. 311-323). Springer US. https://doi.org/101007/0-387-23152-8_41
- Taner, A., Öztekin, Y. B., & Duran, H. (2021). Performance analysis of deep learning CNN models for variety classification in hazelnut. Sustainability, 13(12), 6527. https://doi.org/103390/su13126527
- Tarakci, F., & Ozkan, I. A. (2021). Comparison of classification performance of kNN and WKNN algorithms. Selcuk University Journal of Engineering Sciences, 20(2), 32-37.
- Unay, D., Gosselin, B., & Debeir, O. (2006, January). Apple stem and calyx recognition by decision trees. In Proceedings of the 6th IASTED International Conference on Visualization, Imaging, and Image Processing, VIIP (pp. 549-552).
- Vidyarthi, S. K., Singh, S. K., Xiao, H. W., & Tiwari, R. (2021). Deep learnt grading of almond kernels. Journal of Food Process Engineering, 44(4), e13662. https://doi.org/10.1111/jfpe.13662
- Wang, W., Jung, J., McGorrin, R. J., & Zhao, Y. (2018). Investigation of the mechanisms and strategies for reducing shell cracks of hazelnut (Corylus avellana) in hot-air drying. Lwt, 98, 252-259. https://doi.org/101016/jlwt201808053
- Way, T. W., Sahiner, B., Hadjiiski, L. M., & Chan, H. P. (2010). Effect of finite sample size on feature selection and classification: a simulation study. Medical Physics, 37(2), 907-920. https://doi.org/101118/13284974
- Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., ... & Cui, Y. (2023). Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning. Information Processing in Agriculture, 10(1), 1-10. https://doi.org/10.1016/j.inpa.2021.11.001
ارسال نظر در مورد این مقاله