نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه مهندسی بیوسیستم، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
2 گروه مهندسی مکانیک، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
تشخیص بیماریهای گیاهی بخش مهمی از فرآیند مدیریت مزرعه است و میتواند تاثیر قابلتوجهی بر کمیت و کیفیت تولید داشته باشد. روشهای سنتی ارزیابی چشمی توسط ناظران انسانی زمانبر، پر هزینه و مستعد خطا هستند و تشخیص دقیق و تمایز بین بیماریهای مختلف را دشوار میسازند. پیشرفتهای کشاورزی امکان استفاده از سامانههای بینایی ماشین غیرمخرب را برای تشخیص بیماریهای گیاهی فراهم کرده است و حسگرهای تصویربرداری رنگی توانایی بالایی در این زمینه از خود بروز دادهاند. این مطالعه چارچوبی را برای تشخیص بیماری لکه موجی زودرس و سفیدک داخلی سیبزمینی با استفاده از ترکیبی از الگوریتمهای انتخاب ویژگی Relief و طبقهبندی تصادفی جنگل و ویژگیهای رنگ، بافت و شکل در سه فضای رنگی RGB، HSV و Lab* توصیف کرد. نتایج این بررسی نشان داد که دقت تشخیص برای گروه بیماری لکه موجی زودرس و سفیدک داخلی و گروه برگ سالم بهترتیب 94.71، 95 و 95.2 درصد و دقت کلی برای طبقهبندی بیماری 95.99 درصد بود. همچنین دقت تشخیص برای دو گروه بیماری لکه موجی زودرس و سفیدک داخلی و گروه برگ سالم بهترتیب 91.07، 98.36 و 98.93 درصد و دقت کلی برای طبقهبندی بیماریها 96.12 درصد بود. پس از جداسازی ناحیه بیمار از قسمت سالم برگ، در مجموع 150 ویژگی شامل 45 ویژگی رنگی، 99 ویژگی بافتی و شش ویژگی شکلی استخراج شد. مؤثرترین ویژگیها برای تشخیص بیماری با استفاده از ترکیبی از هر سه مجموعه ویژگی شناسایی شدند. این مطالعه نشان داد که ترکیب این سه مجموعه از ویژگیها میتواند منجر به طبقهبندی دقیقتر برگهای سیبزمینی شود و بینش ارزشمندی در تشخیص و طبقهبندی بیماریهای سیبزمینی ارائه دهد. این رویکرد میتواند به کشاورزان و سایر متخصصان بیماریهای گیاهی کمک کند تا بیماریهای سیبزمینی را بهطور دقیق تشخیص داده و مدیریت کنند و در نهایت منجر به افزایش کیفیت و عملکرد محصول شود.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Abdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2019). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955-978. Springer Science and Business Media LLC. https://doi.org/10.1007/s11119-019-09703-4
- Ampatzidis, Y., Partel, V., & Costa, L. (2020). Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Computers and Electronics in Agriculture, 174, 105457. Elsevier BV. https://doi.org/10.1016/j.compag.2020.105457
- Ashfaq, M., Minallah, N., Ullah, Z., Ahmad, A. M., Saeed, A., & Hafeez, A. (2019). Performance Analysis of Low-Level and High-Level Intuitive Features for Melanoma Detection. Electronics, 8(6), 672. https://doi.org/10.3390/electronics8060672
- Barbedo, J. G. A. (2018). Factors influencing the use of deep learning for plant disease recognition. Biosystems Engineering, 172, 84-91. https://doi.org/10.1016/j.biosystemseng.2018.05.013
- Da Silva Silveira Duarte, H., Zambolim, L., Machado, F. J., Pereira Porto, H. R., & Rodrigues, F. A. (2019). Comparative epidemiology of late blight and early blight of potato under different environmental conditions and fungicide application programs. Semina: Ciências Agrárias, Londrina, 40, 1805-1818. https://doi.org/10.5433/1679-0359.2019v40n5p1805
- Fan, Z., & Li, X. (2019). Recognition of potato diseases based on fast detection and fusion features of ROI. Southwest China Journal of Agricultural Science. 544-550. https://doi.org/10.16213/j.cnki.scjas.2019.3.015
- Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5, 537-561. https://doi.org/10.3390/bios5030537
- Haralick, R. M., Shanmugam, K., & Dinstein, I. (1972). On some quickly computable features for texture. In Symposium of Computer Image Processing and Recognition, University of Missouri, Columbia, 2(2), 12-2.
- Jaisakthi, S. M., Mirunalini, P., & Thenmozhi, D. (2019). Grape leaf disease identification using machine learning techniques, in Proceedings of the 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, 1-6. https://doi.org/10.1109/ICCIDS.2019.8862084
- Liu, B., Tan, C., Li, S., He, J., & Wang, H. (2020). A Data Augmentation Method Based on Generative Adversarial Networks for Grape Leaf Disease Identification. IEEE Access, 8, 102188-102198. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/access.2020.2998839
- Lopez, J. J., Aguilera, E., & Cobos, M. (2009). Defect Detection and Classification in Citrus Using Computer Vision. In Neural Information Processing (pp. 11-18). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_2
- Madufor, N. J. K., Perold, W. J., & Opara, U. L. (2018). detection of plant diseases using biosensors: a review. Acta Horticulturae, 1201, 83-90. https://doi.org/10.17660/ActaHortic.2018.1201.12
- Mohamadzamani, D., Sajadian, S., & Javidan, S. M. (2020). DDetection of Callosobruchus maculatus with image processing and artificial neural network. Applied Entomology and Phytopathology, 88(1), 103-112. https://doi.org/10.22092/jaep.2020.341684.1324
- Mohammadi, P., & Asefpour Vakilian, K. (2023). Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. In Plant Methods, 19(1). Springer Science and Business Media LLC. https://doi.org/10.1186/s13007-023-01095-x
- Mohammadzamani, D., Javidan, S. M., Zand, M., & Rasouli, M. (2023). Detection of Cucumber Fruit on Plant Image Using Artificial Neural Network. Journal of Agricultural Machinery, 13(1), 27. https://doi.org/10.22067/jam.2022.73827.1077
- Padol, P. B., & Yadav, A. A. (2016). SVM classifier based grape leaf disease detection, in Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), April 12-15. Lisbon,
- Singh, A., & Kaur, H. (2021). Potato Plant Leaves Disease Detection and Classification using Machine Learning Methodologies. In IOP Conference Series: Materials Science and Engineering, 1022(1), 012121. IOP Publishing. https://doi.org/10.1088/1757-899x/1022/1/012121
- Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimedia Tools and Applications, 81, 367-419. https://doi.org/10.1007/s11042-021-11375-0
- Xiao, Z., & Liu, H. (2017). Adaptive features fusion and fast recognition of potato typical disease images. Transactions of the Chinese Society for Agricultural Machinery, 48(12), 26-32. https://doi.org/10.6041/j.issn.1000-1298.2017.12.003
- Xie, C., Shao, Y., Li, X., & He, Y. (2015). Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Scientific Reports, 5, 1-11. https://doi.org/10.1038/srep16564
- Xie, X., Ma, Y., Liu, B., He, J., Li, S., & Wang, H. (2020). A Deep-Learning-Based Real-Time Detector for Grape Leaf Diseases Using Improved Convolutional Neural Networks. Frontiers in Plant Science, 11(2). Frontiers Media SA. https://doi.org/10.3389/fpls.2020.00751
- Yang, S., Feng, Q., Zhang, J., Sun, W., & Wang, G. (2020). Identification method for potato disease based on deep learning and composite dictionary. Transactions of the Chinese Society for Agricultural Machinery, 51(7), 22-29. https://doi.org/10.6041/j.issn.1000-1298.2020.07.003
- Zhai, C., Qiu, W., Weckler, P., He, X., & Jabran, K. (2023). Editorial: Advanced application technology for plant protection: Sensing, modelling, spraying system and equipment. Frontiers in Plant Science, 14. Frontiers Media SA. https://doi.org/10.3389/fpls.2023.1113359
- Zhou, W., Gao, S., Zhang, L., & Lou, X. (2020). Histogram of Oriented Gradients Feature Extraction from Raw Bayer Pattern Images. In IEEE Transactions on Circuits and Systems II: Express Briefs, 67(5), 946-950). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tcsii.2020.2980557
ارسال نظر در مورد این مقاله