نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران
2 گروه مهندسی کشاورزی، دانشگاه ملی مهارت، تهران، ایران
چکیده
تصویربرداری تشدید مغناطیسی (MRI)، یک روش غیرمخرب برای تعیین کیفیت میوهها است که با پروتکلهای مختلف، چگالی و ساختار اتمهای هیدروژن را که در آن قرار میگیرد نشانمی دهد. در این مطالعه تصاویر MRI گرفتهشده با پروتکلهای مختلف از بافت گوشتی و قسمت کبودشده میوه سیب بدون آفت و با آفت مقایسه و بهترین پروتکل معرفی شد. برای این منظور، تصویربرداری تشدید مغناطیسی (MRI) با استفاده از دو پروتکل T1 و T2 بر روی 200 میوه سیب بارگذاریشده در حین نگهداری انجام شد. بارگیری میوهها در چهار سطح 150، 300، 450 و 600 نیوتن بهصورت شبهاستاتیک انجام شد و سپس در دورههای 25، 50 و 75 روزه در دمای 4 درجه سانتیگراد نگهداری شد. در پایان هر دوره ذخیرهسازی، تصویربرداری انجام شد. سپس کنتراست تصاویر T1 و T2 صدا و بافت کبودشده میوه سیب با و بدون آفت با استفاده از نرمافزار ImageJ تعیین شد. نتیجهگیری شد که بافت صوتی میوه سیب بدون آفت در تصاویر T1 واضحتر از تصاویر T2 بود. همچنین دیده شده است که ناحیه کبودی میوههای بدون آفت در تصاویر T2 بیشتر از تصاویر T1 قابلتشخیص است.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Defraeye, T., Lehmann, V., Gross, D., Holat, C., Herremans, E., Verboven, P., Verlinden, B. E., & Nicolai, B. M. (2013). Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biology and Technology, 75, 96-105. https://doi.org/10.1016/j.postharvbio.2012.08.009
- Diels, E., Dael, M. V., Keresztes, J., Vanmaercke, S., Verboven, P., Nicolai, B., Saeys, W., Ramon, H., & Smeets, B. (2017). Assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biology and Technology, 128, 24-32. https://doi.org/10.1016/j.postharvbio.2017.01.013
- Galed, G., Fernández-Valle, M. E., Martinez, A., & Heras, A. (2004). Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. Magnetic Resonance Imaging, 22, 127-137. https://doi.org/10.1016/j.mri.2003.05.006
- Gonzalez, J. J., Valle, R. C., Bobroff, S., Biasi, W. V., Mitcham, E. J., & McCarthy, M. J. (2001). Detection and monitoring of internal browning development in ‘Fuji’ apples using MRI. Postharvest Biology and Technology, 22, 179-188. https://doi.org/10.1016/S0925-5214(00)00183-6
- Haishi, T., Koizumi, H., Arai, T., Koizumi, M., & Kano, H. (2011). Rapid detection of infestation of apple fruits by the peach fruit moth, Carposina sasakii Matsumura, larvae using a 0.2-T dedicated magnetic resonance imaging apparatus. Applied Magnetic Resonance, 41, 1-18. https://doi.org/10.1007/s00723-011-0222-8
- Hernández-Sánchez, N., Hills, B. P., Barreiro, P., & Marigheto, N. (2007). An NMR study on internal browning in pears. Postharvest Biology and Technology, 44, 260-270. https://doi.org/10.1016/j.postharvbio.2007.01.002
- Herremans, E., Melado-Herreros, A., Defraeye, T., Verlinden, B., Hertog, M., Verboven, P., Val, J., Fernández-Valle, M. E., Bongaers, E., Estrade, P., Wevers, M., Barreiro, P., & Nicolai, B. M. (2014). Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars. Postharvest Biology and Technology, 87, 42-50. https://doi.org/10.1016/j.postharvbio.2013.08.008
- Khodabakhshian, R., & Emadi, B. (2017). Application of Vis/SNIR hyperspectral imaging in ripeness classification of pear. International Journal of Food Properties, 20(sup3). https://doi.org/10.1080/10942912.2017.1354022
- Khodabakhshian, R., Emadi, B., Khojastehpour, M., & Golzarian, M. (2019). Instrumental measurement of pomegranate texture during four maturity stages. Journal of Texture Studies, 50. https://doi.org/10.1111/jtxs.12406
- Khodabakhshian, R. (2022). Raman Spectroscopy for Fresh Fruits and Vegetables. In P. B. Pathare & M. S. Rahman (Eds.), Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables (pp. 193–214). https://doi.org/10.1007/978-981-19-5422-1_8
- Lan, W., Jaillais, B., Chen, S., Renard, M. G. C., Leca, A., & Bureau, S. (2022). Fruit variability impacts puree quality: Assessment on individually processed apples using the visible and near infrared spectroscopy. Food Chemistry, 390, 133088. https://doi.org/10.1016/j.foodchem.2022.133088
- Leiva-Valenzuela, G. A., & Aguilera, J. M. (2013). Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality. Food Control, 33(1), 166-173. https://doi.org/10.1016/j.foodcont.2013.02.025
- Li, M., Li, B., & Zhang, W. J. (2018). Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI. Food Chemistry, 242, 16-21. https://doi.org/10.1016/j.foodchem.2017.08.086
- Lu, L., Hu, Z., Hu, X., Li, D., & Tian, S. (2022). Electronic tongue and electronic nose for food quality and safety. Food Research International, 162, 112214. https://doi.org/10.1016/j.foodres.2022.112214
- Mazhar, M., Joyce, D., Cowin, G., Brereton, I., Hofman, P., Collins, R., & Gupta, M. (2015). Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana) cv. Hass. Postharvest Biology and Technology, 100, 33-40. https://doi.org/10.1016/j.postharvbio.2014.09.006
- McRobbie, D. W., Moore, E. A., Graves, M. J., & Prince, M. R. (2009). MRI from picture to proton. Cambridge University Press. https://doi.org/10.1017/CBO9780511545405
- Mierzwa, D., Szadzinska, J., Gapinski, B., Radziejewska-Kubzdela, E., & Biegańska-Marecik, R. (2022). Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries’ quality. Ultrasonics Sonochemistry, 89, 106117. https://doi.org/10.1016/j.ultsonch.2022.106117
- Noshad, F., Asghari, A., Azadbakht, M., & Ghasemnezhad, A. (2020). Comparison of different Magnetic Resonance Imaging (MRI) protocols from Quince fruit. Iranian Journal of Biosystem Engineering, 51(3), 539-549. https://doi.org/10.22059/ijbse.2020.292847.665244
- Olakanmi, S., Karunakaran, C., & Jayas, D. (2023). Applications of X-ray micro-computed tomography and small-angle X-ray scattering techniques in food systems: A concise review. Journal of Food Engineering, 342, 111355. https://doi.org/10.1016/j.jfoodeng.2022.111355
- Ozel, B., & Oztop, M. H. (2021). A quick look to the use of time domain nuclear magnetic resonance relaxometry and magnetic resonance imaging for food quality applications. Current Opinion in Food Science, 41, 122-129. https://doi.org/10.1016/j.cofs.2021.03.012
- Perez-Palacios, T., Avila, M., Antequera, T., Torres, J. P., González-Mohino, A., & Caro, A. (2023). MRI-computer vision on fresh and frozen-thawed beef: Optimization of methodology for classification and quality prediction. Meat Science, 197, 109054. https://doi.org/10.1016/j.meatsci.2022.109054
- Razavi, M. S., Asghari, A., Azadbakh, M., & Shamsabadi, H. A. (2018). Analyzing the pear bruised volume after static loading by Magnetic Resonance Imaging (MRI). Scientia Horticulturae, 229, 33-39. https://doi.org/10.1016/j.scienta.2017.10.011
- Shicheng, Q., Youwen, T., Ping, S., Kuan, H., & Shiyuan, S. (2019). Analysis and detection of decayed blueberry by low-field nuclear magnetic resonance and imaging. Postharvest Biology and Technology, 156, 110951. https://doi.org/10.1016/j.postharvbio.2019.110951
- Srivastava, R. K., Talluri, S., Beebi, S. K., & Kumar, B. R. (2018). Magnetic resonance imaging for quality evaluation of fruits: A review. Food Analytical Methods, 11, 2943-2960. https://doi.org/10.1007/s11483-018-9687-1
- Wieme, J., Mollazade, K., Malounas, L., Zude-Sasse, M., Zhao, M., Gowen, A., Argyropoulos, D., Fountas, S., & Van Beek, J. (2022). Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosystems Engineering, 222, 156-176. https://doi.org/10.1016/j.biosystemseng.2022.07.013
- Zhang, L., & McCarthy, J. M. (2012). Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biology and Technology, 67, 96-101. https://doi.org/10.1016/j.postharvbio.2011.12.018
- Zhang, D., Xu, Y., Huang, W., Tian, X., Xia, Y., Xu, L., & Fan, S. (2019). Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Physics & Technology, 98, 297-304. https://doi.org/10.1016/j.infrared.2019.03.026
- Zhang, Z., Liu, H., Chen, D., Zhang, J., Li, H., Shen, M., Pu, Y., Zhang, Z., Zhao, J., & Hu, J. (2022). SMOTE-based method for balanced spectral nondestructive detection of moldy apple core. Food Control, 141, 109100. https://doi.org/10.1016/j.foodcont.2022.109100
ارسال نظر در مورد این مقاله