با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

برداشت رباتیک محصولات کشاورزی فرآیندی مهم و موثر برای تولید میوه سالم، کاهش هزینه‌های برداشت و افزایش بهره‌وری است. با پیشرفت بینایی ماشین، استفاده از اطلاعات سه‌بعدی به‌جای اطلاعات دوبعدی در حال گسترش است. با این حال، برداشت فلفل دلمه‌ای به‌عنوان یکی از محصولات گلخانه‌ای، به دلیل دقت پایین سنسورهای دوبعدی با چالش‌هایی مواجه است. هدف این مطالعه توسعه یک الگوریتم بینایی ماشین بدون نظارت برای تشخیص فلفل دلمه رنگی با استفاده از ترکیبی از ویژگی‌های هندسی (هیستوگرام ویژگی نقطه سریع- FPFH) و ویژگی‌های رنگی (HSV) است. تصاویر عمق با استفاده از حسگر Kinect-v2 دریافت و مدل سه‌بعدی بازسازی شده است. پس از استخراج ویژگی‌های هندسی و رنگ، داده‌ها با استفاده از روش زیر نمونه‌گیری و با اعمال معیار Z-score برای فیلتر کردن نویزها، پیش‌پردازش شدند. تحلیل مؤلفه اصلی (PCA) برای کاهش ابعاد ویژگی‌ها استفاده شد و مدل خوشه‌بندی k-means با استفاده از شش ویژگی هندسی و سه ویژگی رنگ، به داده‌ها اعمال شد. ضریب سیلوئت برای ارزیابی کیفیت خوشه‌بندی استفاده شد و ارزیابی انسانی نشان داد که الگوریتم با دقت 10/95 درصد قادر به تشخیص فلفل دلمه‌ای است.

کلیدواژه‌ها

موضوعات

  1. Adams, T., Nolen, S., Sweezy, J., Zukaitis, A., Campbell, J., Goorley, T., ... & Aulwes, R. (2015). Monte Carlo application toolkit (MCATK). Annals of Nuclear Energy, 82, 41-47. https://doi.org/10.1016/j.anucene.2014.08.047
  2. Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., ... & Bate, A. (2016). Vision‐based obstacle detection and navigation for an agricultural robot. Journal of Field Robotics, 33(8), 1107-1130. https://doi.org/10.1002/rob.21644
  3. Behley, J., Steinhage, V., & Cremers, A. B. (2012, May). Performance of histogram descriptors for the classification of 3D laser range data in urban environments. In 2012 IEEE international conference on robotics and automation (pp. 4391-4398). IEEE. https:1109/ICRA.2012.6225003
  4. Chidambaranathan, C. M., Handa, S. S., Ramanamurthy, M. V., & Ramanamurthy, M. V. (2018). Development of smart farming-a detailed study. International Journal of Engineering & Technology, 7(2.4), 56. https://doi.org/10.14419/ijet.v7i2.4.10042
  5. Dharmaraj, V., & Vijayanand, C. (2018). Artificial intelligence (AI) in agriculture. International Journal of Current Microbiology and Applied Sciences, 7(12), 2122-2128. https://doi.org/10.20546/ijcmas.2018.712.241
  6. Doosti-Irani, O., Golzarian, M. R., & Aghkhani, M. H. (2023). Automatic recognition of sweet peppers based on the fast point features histogram (FPFH) 3-D descriptor and machine learning. Journal of Researches in Mechanics of Agricultural Machinery, 12(1), 27-40. https://doi.org/22034/jrmam.2023.13863.587
  7. Fu, L., Majeed, Y., Zhang, X., Karkee, M., & Zhang, Q. (2020). Faster R–CNN–based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting. Biosystems Engineering, 197, 245-256. https://doi.org/10.1016/j.biosystemseng.2020.07.007
  8. Gan, H., Lee, W. S., Alchanatis, V., Ehsani, R., & Schueller, J. K. (2018). Immature green citrus fruit detection using color and thermal images. Computers and Electronics in Agriculture, 152, 117-125. https://doi.org/10.1016/j.compag.2018.07.011
  9. Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8-19. https://doi.org/10.1016/j.compag.2015.05.021
  10. Gongal, A., Silwal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2016). Apple crop-load estimation with over-the-row machine vision system. Computers and Electronics in Agriculture, 120, 26-35. https://doi.org/10.1016/j.compag.2015.10.022
  11. Han, X. F., Sun, S. J., Song, X. Y., & Xiao, G. Q. (2018). 3D point cloud descriptors in hand-crafted and deep learning age: State-of-the-art. arXiv preprint arXiv:1802.02297.
    https://doi.org/10.48550/arXiv.1802.02297
  12. Hemming, J., Bac, C. W., & Van Tuijl, B. A. J. (2011). CROPS project deliverable 5.1: Report with design objectives and requirements for sweet-pepper harvesting. Wageningen, The Netherlands: Wageningen UR Greenhouse Horticulture.
  13. Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3, 100081. https://doi.org/10.1016/j.atech.2022.100081
  14. Kurtulmus, F., Lee, W. S., & Vardar, A. (2014). Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision Agriculture, 57-79. https://doi.org/10.1007/s11119-013-9323-8
  15. Lachat, E., Macher, H., Mittet, M. A., Landes, T., & Grussenmeyer, P. (2015). First experiences with kinect v2 sensor for close range 3d modelling. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. https://org/10.5194/isprsarchives-XL-5-W4-93-2015
  16. Moghimi, A., Aghkhani, M. H., & Golzarian, M. R. (2015). Desigining of Computer Vision Algorithm to Detect Sweet Pepper for Robotic Harvesting Under Natural Light. Journal of Agricultural Machinery, 5(1), 82-91. https://doi.org/10.22067/jam.v5i1.23528
  17. Mohamadzamani, D., Javidan, S. M., Zand, M., & Rasouli, M. (2023). Detection of Cucumber Fruit on Plant Image Using Artificial Neural Network. Journal of Agricultural Machinery, 13(1), 27-39. https://doi.org/10.22067/jam.2022.73827.1077
  18. Mohammadi, P., Massah, J., & Asefpour Vakilian, K. (2023). Robotic date fruit harvesting using machine vision and a 5‐DOF manipulator. Journal of Field Robotics. https://doi.org/10.1002/rob.22184
  19. Muja, M., Rusu, R. B., Bradski, G., & Lowe, D. G. (2011, May). Rein-a fast, robust, scalable recognition infrastructure. In 2011 IEEE international conference on robotics and automation (pp. 2939-2946). IEEE.
  20. Nan, Y., Zhang, H., Zeng, Y., Zheng, J., & Ge, Y. (2023). Faster and accurate green pepper detection using NSGA-II-based pruned YOLOv5l in the field environment. Computers and Electronics in Agriculture205, 107563. http://dx.doi.org/10.1016/j.compag.2022.107563
  21. Nguyen, T. T., Vandevoorde, K., Kayacan, E., De Baerdemaeker, J., & Saeys, W. (2014, July). Apple detection algorithm for robotic harvesting using a RGB-D camera. In International Conference of Agricultural Engineering, Zurich, Switzerland.
  22. Ning, Z., Luo, L., Ding, X., Dong, Z., Yang, B., Cai, J., ... & Lu, Q. (2022). Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards. Computers and Electronics in Agriculture, 196, 106878. https://doi.org/10.1016/j.compag.2022.106878
  23. Ringdahl, O., Kurtser, P., & Edan, Y. (2019). Evaluation of approach strategies for harvesting robots: Case study of sweet pepper harvesting: Category:(5). Journal of Intelligent & Robotic Systems, 95(1), 149-164. https://doi.org/10.1007/s10846-018-0892-7
  24. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
  25. Rusu, R. B., & Cousins, S. (2011, May). 3d is here: Point cloud library (pcl). In 2011 IEEE international conference on robotics and automation (pp. 1-4). IEEE.
  26. Rusu, R. B., Blodow, N., & Beetz, M. (2009, May). Fast point feature histograms (FPFH) for 3D registration. In 2009 IEEE international conference on robotics and automation (pp. 3212-3217). IEEE.
  27. Rusu, R. B., Marton, Z. C., Blodow, N., & Beetz, M. (2008, July). Persistent point feature histograms for 3D point clouds. In Proc 10th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany (pp. 119-128).
  28. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system using deep neural networks. Sensors, 16(8), 1222. https://doi.org/10.3390/s16081222
  29. Sa, I., Lehnert, C., English, A., McCool, C., Dayoub, F., Upcroft, B., & Perez, T. (2017). Peduncle detection of sweet pepper for autonomous crop harvesting—combined color and 3-D information. IEEE Robotics and Automation Letters, 2(2), 765-772. https://doi.org/1109/LRA.2017.2651952
  30. Shamshiri, R. R., Hameed, I. A., Karkee, M., & Weltzien, C. (2018). Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB. Proceedings in Automation in Agriculture-Securing Food Supplies for Future Generations, 126, 81-105. https://doi.org/5772/intechopen.73861
  31. Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442
  32. Stein, M., Bargoti, S., & Underwood, J. (2016). Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors, 16(11), 1915. https://doi.org/10.3390/s16111915
  33. Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, X. (2020). Recognition and localization methods for vision-based fruit picking robots: A review. Frontiers in Plant Science, 11, 510. https://doi.org/10.3389/fpls.2020.00510
  34. Tao, Y., & Zhou, J. (2017). Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Computers and Electronics in Agriculture, 142, 388-396. https://doi.org/10.1016/j.compag.2017.09.019
  35. Wan, Y., Li, Y., Jiang, J., & Xu, B. (2020, March). Edge Voxel Erosion for Noise Removal in 3D Point Clouds Collected by Kinect. In Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing (pp. 59-63). https://doi.org/10.1145/3388818.3388821
  36. Zhao, X., Li, H., Zhu, Q., Huang, M., Guo, Y., & Qin, J. (2020). Automatic sweet pepper detection based on point cloud images using subtractive clustering. International Journal of Agricultural and Biological Engineering, 13(3), 154-160. https://doi.org/10.25165/j.ijabe.20201303.5460
CAPTCHA Image