نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
چکیده
چیدن دستی گلهای محمدی به دلیل وجود خارهای زیاد روی ساقههای آن بسیار دشوار است. بنابراین تشخیص بیدرنگ گل محمدی شکفته در مزارع روباز برای طراحی یک ربات بهمنظور برداشت خودکار این گل ضروری است. با توجه به سرعت بالا و دقت مناسب شبکههای عصبی کانولوشن عمیق (DCNN)، هدف از این مطالعه بررسی پتانسیل مدل بهینهشده YOLOv8s در تشخیص گلهای محمدی شکفته است. بهمنظور ارزیابی اندازه مدل YOLO بر عملکرد مدل، دقت و سرعت تشخیص نسخههای دیگر مدل YOLO ازجمله v5s و v6s نیز مورد بررسی قرار گرفت. برای رسیدن به این هدف، تصاویر گلهای محمدی تحت شرایط نور عادی (از سپیدهدم تا طلوع آفتاب) و شرایط نور شدید (از طلوع آفتاب تا ۱۰ صبح) تهیه شدند. نتایج ارزیابی نشان داد که مدل YOLOv8s با میانگین متوسط دقت(mAP50) و سرعت شناسایی بهترتیب %98 و 243.9 فریم در ثانیه (fps) بهترین عملکرد را به نمایش گذاشت و در مقایسه با مدلهای YOLOv5s و YOLOv6s مقدار mAP50 آن بهترتیب 0.3% و 6.1%، و مقدار سرعت تشخیص آن بهترتیب fps 169.3 و fps 198.6 بیشتر بود. نتایج تجربی نشان میدهد که YOLOv8s در تصاویر گرفتهشده در نور عادی عملکرد بهتری نسبت به تصاویر گرفتهشده در نور شدید دارد. کاهش 2.5% در مقدار mAP50 و 2.4% در سرعت تشخیص نشاندهنده تأثیر منفی نور شدید محیطی بر اثر بخشی مدل است. این تحقیق نشان میدهد که مدل YOLOv8s یک راهحل قابلقبول برای تشخیص بیدرنگ گل محمدی فراهم میکند و راهنمای خوبی برای تشخیص سایر گیاهان مشابه است.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Anjani, I. A., Pratiwi, Y. R., & Nurhuda, S. N. B. (2021, March). Implementation of deep learning using convolutional neural network algorithm for classification rose flower. In Journal of Physics: Conference Series (Vol. 1842, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1742-6596/1842/1/012002
- Apeinans, I., Sondors, M., Litavniece, L., Kodors, S., Zarembo, I., & Feldmane, D. (2024, June). Cherry Fruitlet Detection using YOLOv5 or YOLOv8? In TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference(Vol. 2, pp. 29-33). https://doi.org/10.17770/etr2024vol2.8013
- Bataduwaarachchi, S. D., Sattarzadeh, A. R., Stewart, M., Ashcroft, B., Morrison, A., & North, S. (2023). Towards autonomous cross-pollination: Portable multi-classification system for in situ growth monitoring of tomato flowers. Smart Agricultural Technology, 4, 100205. https://doi.org/10.1016/j.atech.2023.100205
- Dias, P. A., Tabb, A., & Medeiros, H. (2018). Apple flower detection using deep convolutional networks. Computers in Industry, 99, 17-28. https://doi.org/10.1016/j.compind.2018.03.010
- Estrada, J. S., Vasconez, J. P., Fu, L., & Cheein, F. A. (2024). Deep Learning based flower detection and counting in highly populated images: A peach grove case study. Journal of Agriculture and Food Research, 15, 100930. https://doi.org/10.1016/j.jafr.2023.100930
- Guru, D. S., Kumar, Y. S., & Manjunath, S. (2011). Textural features in flower classification. Mathematical and Computer Modelling, 54(3-4), 1030-1036. https://doi.org/10.1016/j.mcm.2010.11.032
- Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by Ultralytics. https://github.com/ultralytics/ultralytics
- Kumar, R., Sharma, S., Sood, S., Agnihotri, V. K., & Singh, B. (2013). Effect of diurnal variability and storage conditions on essential oil content and quality of damask rose (Rosa damascena) flowers in north western Himalayas. Scientia Horticulturae, 154, 102-108. https://doi.org/10.1016/j.scienta.2013.02.002
- Manikanta, Y. E. R. R. A. P. O. T. H. U., Rao, S. S., & Venkatesh, R. (2017). The design and simulation of rose harvesting robot. International Journal of Mechanical and Production Engineering Research and Development, 9(1), 191-200.
- Mithra, S., & Nagamalleswari, T. Y. J. (2023). Cucurbitaceous family flower inferencing using deep transfer learning approaches: CuCuFlower UAV imagery data. Soft Computing, 27(12), 8345-8356. https://doi.org/10.1007/s00500-023-08186-w
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
- Rusanov, K., Kovacheva, N., Rusanova, M., & Atanassov, I. (2011). Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chemistry, 129(4), 1851-1859. https://doi.org/1016/j.foodchem.2011.05.132
- Sharma, S., & Kumar, R. (2018). Influence of Harvesting Stage and Distillation Time of Damask Rose (Rosa damascena) Flowers on Essential Oil Content and Composition in the Western Himalayas. Journal of Essential Oil-Bearing Plants, 21(1), 92-102. https://doi.org/10.1080/0972060X.2017.1399089
- Shinoda, R., Motoki, K., Hara, K., Kataoka, H., Nakano, R., Nakazaki, T., & Noguchi, R. (2023). RoseTracker: a system for automated rose growth monitoring. Smart Agricultural Technology, 100271. https://doi.org/10.1016/j.atech.2023.100271
- Silva, G., Monteiro, R., Ferreira, A., Carvalho, P., & Corte-Real, L. (2019). Face detection in thermal images with YOLOv3. In Advances in Visual Computing: 14th International Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA, October 7–9, 2019, Proceedings, Part II 14(pp. 89-99). Springer International Publishing. https://doi.org/10.1007/978-3-030-33723-0_8
- Sun, K., Wang, X., Liu, S., & Liu, C. (2021). Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set. Computers and Electronics in Agriculture, 185, 106150. https://doi.org/10.1016/j.compag.2021.106150
- Terven, J., & Cordova-Esparza, D. (2023). A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond. arXiv preprint arXiv:2304.00501. https://doi.org/10.3390/make5040083
- Thakur, M., Sharma, S., Sharma, U., & Kumar, R. (2019). Study on effect of pruning time on growth, yield and quality of scented rose (Rosa damascena) varieties under acidic conditions of western Himalayas. Journal of Applied Research on Medicinal and Aromatic Plants, 13, 100202. https://doi.org/10.1016/j.jarmap.2019.100202
- Tung, C., Kelleher, M. R., Schlueter, R. J., Xu, B., Lu, Y. H., Thiruvathukal, G. K., ... & Lu, Y. (2019, March). Large-scale object detection of images from network cameras in variable ambient lighting conditions. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 393-398). https://doi.org/10.1109/MIPR.2019.00080
- Ucar, Y., Kazaz, S., Eraslan, F., & Baydar, H. (2017). Effects of different irrigation water and nitrogen levels on the water use, rose flower yield and oil yield of Rosa damascena. Agricultural Water Management, 182, 94-102. https://doi.org/10.1016/j.agwat.2016.12.004
- Ultralytics. (n.d.). YOLOv8: Model architecture. Retrieved from https://docs.ultralytics.com/models/yolov8/
- Wang, C., Wang, Y., Liu, S., Lin, G., He, P., Zhang, Z., & Zhou, Y. (2022). Study on pear flowers detection performance of YOLO-PEFL model trained with synthetic target images. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.911473
- Wang, Z., Underwood, J., & Walsh, K. B. (2018). Machine vision assessment of mango orchard flowering. Computers and Electronics in Agriculture, 151, 501-511. https://doi.org/10.1016/j.compag.2018.06.040
- Wang, D., & He, D. (2021). Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosystems Engineering, 210, 271-281. https://doi.org/10.1016/j.biosystemseng.2021.08.015
- Wu, D., Lv, S., Jiang, M., & Song, H. (2020). Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Computers and Electronics in Agriculture, 178, 105742. https://doi.org/1016/j.compag.2020.105742
- Yousefi, B., & Jaimand, K. (2018). Chemical variation in the essential oil of Iranian Rosa damascena landraces under semi-arid and cool conditions. International Journal of Horticultural Science and Technology, 5(1), 81-92. https://doi.org/10.22059/ijhst.2018.256329.234
- Zhang, M., Su, H., & Wen, J. (2021). Classification of flower image based on attention mechanism and multi-loss attention network. Computer Communications, 179, 307-317. https://doi.org/10.1016/j.comcom.2021.09.001
ارسال نظر در مورد این مقاله