با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله مروری لاتین

نویسندگان

1 دانشکده زراعت، دانشگاه کشاورزی تامیل نادو، کوایمباتور، ایالت تامیل نادو، هند

2 معاونت مدیریت محصولات زراعی، دانشگاه کشاورزی تامیل نادو، کوایمباتور، ایالت تامیل نادو، هند

3 دانشکده فیزیولوژی گیاهی، دانشگاه کشاورزی تامیل نادو، کوایمباتور، ایالت تامیل نادو، هند

4 دانشکده مهندسی ماشین‌آلات کشاورزی و قدرت، دانشگاه کشاورزی تامیل نادو، کوایمباتور، ایالت تامیل نادو، هند

10.22067/jam.2024.87897.1247

چکیده

روش سنتی نشاکاری برنج نیاز به نیروی انسانی زیادی دارد و منجر به تغییر به سمت کاشت مستقیم بذر برنج برای کشت برنج شده است. از جمله مزایای کاشت مستقیم بذر می‌توان به کاهش نیاز به نیروی کار، کاشت به‌موقع و صرفه‌جویی در آب اشاره کرد. نوآوری در ماشین‌آلات کشاورزی کارایی کشت مستقیم بذر برنج را به‌طور قابل‌توجهی بهبود بخشیده است و این پیشرفت تمام مراحل از آماده‌سازی زمین تا برداشت را در برمی‌گیرد. تکنیک‌هایی مانند روش‌های بدون خاک‌ورزی و تسطیح لیزری، استفاده کارآمد از منابع و حفظ منابع آب را تضمین می‌کند و در عین حال اختلالات خاک را به حداقل می‌رساند. امکان قرارگیری دقیق بذر و جوانه‌زنی یکنواخت با استفاده از بذرکارهای اختصاصی و دستگاه‌های سنجش دقیق بذر فراهم شده است. استفاده از بذرکارهای پشت‌تراکتوری و کارنده‌های دستی گردان راندمان کاشت را بیشتر افزایش می‌دهند. روش‌های آبیاری مدرن مانند آبیاری قطره‌ای، آبیاری تناوبی، و سنجش خودکار رطوبت خاک، بهره‌وری آب را بهینه می‌کنند. مدیریت علف‌های هرز با فناوری‌های وجین‌کن‌های مکانیکی از طریق انرژی خورشیدی و خودران تکامل یافته است. نقشه‌برداری‌های مختلف زمین و عملکرد محصول، فناوری نرخ متغیر و وسایل نقلیه هوایی بدون سرنشین (پهپاد) امکان کنترل دقیق علف‌های هرز بر اساس مدیریت مکانی خاص را فراهم می‌کنند. به‌طور کلی، ماشین‌آلات مدرن انقلابی در کشت مستقیم بذر برنج ایجاد کرده‌اند که منجر به افزایش عملکرد، کارایی بالاتر در استفاده از نهاده‌ها، کاهش نیاز به نیروی کار، افزایش عملکرد محصول و بهبود پایداری تولید شده است. تداوم نوآوری، چشم‌انداز وسیعی برای بهینه‌سازی استقرار گیاه در خاک، به حداقل رساندن تلفات پس از برداشت و افزایش سودآوری و در عین حال حفظ منابع طبیعی دارد. این مقاله مروری به بررسی این پیشرفت‌ها و پیامدهای آن‌ها برای آینده کشت مستقیم بذر برنج می‌پردازد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Acharya, P., Regmi, P. P., Gauchan, D., KC, D. B., & KC, G. B. (2020). Comparative study on technical efficiency of mechanized and traditional rice farm in Nepal. Journal of Agriculture and Natural Resources3(2), 82-91. https://doi.org/10.3126/janr.v3i2.32484
  2. Ahmad, S. N. I. S. S., Juraimi, A. S., Sulaiman, N., Che'Ya, N. N., Su, A. S. M., Nor, N. M., & Roslin, M. H. M. (2023). Weeds Detection and Control in Rice Crop Using UAVs and Artificial Intelligence: A Review. Advances in Agricultural and Food Research Journal4(2). https://doi.org/10.36877/aafrj.a0000371
  3. Arivukodi, S., & Velayutham, A. (2017). Evolving suitable weed management practices for direct sown drum seeded rice in Thamirabarani command area. Agric. Update, 12(TECHSEAR-2). 567-571. https://doi.org/15740/HAS/AU/12.TECHSEAR(2)2017/567-571
  4. Arouna, A., Dzomeku, I. K., Shaibu, A. G., & Nurudeen, A. R. (2023). Water management for sustainable irrigation in rice (Oryza sativa) production: A review. Agronomy13(6), 1522. https://doi.org/10.3390/agronomy13061522
  5. Barbaś, P., Sawicka, B., Marczak, B. K., & Pszczółkowski, P. (2020). Effect of mechanical and herbicide treatments on weed densities and biomass in two potato cultivars. Agriculture10(10), 455. https://doi.org/10.3390/agriculture10100455
  6. Basavaraj, P. R., Ajaykumar, K., & Swathi, M. (2020). Development and evaluation of solar operated sprayer. Indian Journal of Ecology47(11), 245-248. https://www.researchgate.net/publication/343384473
  7. Conesa, M. R., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2021). Soil-based automated irrigation for a nectarine orchard in two water availability scenarios. Irrigation Science, 39(4), 421-439. https://doi.org/10.1007/s00271-021-00736-0
  8. Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019, May). A review on the use of drones for precision agriculture. In IOP Conference Series: Earth and Environmental Science, 275(1), 012022. IOP Publishing. https://doi.org/1088/1755-1315/275/1/012022
  9. De Nardi, S., Carnevale, C., Raccagni, S., & Sangiorgi, L. (2024). Data-Driven Models to Forecast the Impact of Temperature Anomalies on Rice Production in Southeast Asia. Forecasting6(1), 100-114. https://doi.org/10.3390/forecast6010006
  10. Dhruw, U. K., & Verma, A. (2018). Power Operated Paddy Seeder for Dry and Wet Seeding. Journal of Plant Development Sciences, 10(6), 311-315.
  11. Farooq, M. K. H. M., Siddique, K. H., Rehman, H., Aziz, T., Lee, D. J., & Wahid, A. (2011). Rice direct seeding: experiences, challenges and opportunities. Soil and Tillage Research111(2), 87-98. https://doi.org/10.1016/j.still.2010.10.008
  12. Haryono, D., Hudoyo, A., & Mayasari, I. (2021, April). The sustainable agricultural mechanization of rice farming and its impact on land productivity and profit in Lampung Tengah Regency. In IOP Conference Series: Earth and Environmental Science, 739(1), 012056. IOP Publishing. https://doi.org/10.1088/1755-1315/739/1/012056
  13. Hassan, U., Shahbaz, M., Kashif, M. S., Ali, L., Chaudhary, M. T., & Qamar, W. (2021). Evaluation of Different Land Preparation Techniques for Preparing Medium Textured Soil in Rice Production under Agro-Ecological Conditions of Sheikhupura-Pakistan. Turkish Journal of Agriculture-Food Science and Technology9(12), 2131-2135. https://doi.org/10.24925/turjaf.v9i12.2131-2135.4331
  14. Hoque, M. A., & Hannan, M. A. (2014). Performance evaluation of laser guided leveler. International Journal of Agricultural Research, Innovation and Technology (IJARIT)4(2), 82-86. https://doi.org/22004/ag.econ.305374
  15. Hu, L., Xu, Y., He, J., Du, P., Zhao, R., & Luo, X. (2020). Design and test of tractor-attached laser-controlled rotary scraper land leveler for paddy fields. Journal of Irrigation and Drainage Engineering146(4), 04020002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001448
  16. Ishfaq, M., Akbar, N., Anjum, S. A., & Anwar-Ijl-Haq, M. (2020). Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture19(11), 2656-2673. https://doi.org/10.1016/S2095-3119(19)62876-5
  17. Kemparaju, K. B. (2023). Diversity in Rice Germplasm. Biodiversity, Ecosystem Services and Genetic Resources, 58.
  18. Kilemo, D. B. (2022). The review of water use efficiency and water productivity metrics and their role in sustainable water resources management. Open Access Library Journal9(1), 1-21. https://doi.org/10.4236/oalib.1107075
  19. Kishore Kumar, P. (2018). Effect of Different Wet Seeding Methods and Weed Management Practices on Grain Yield of Unpuddled Rice (Oryza sativa) in Tamirabarani Command Area. International Journal of Agriculture Sciences, ISSN, 0975-3710
  20. Komatineni, B. K., Satpathy, S. K., Reddy, K. K. V., Sukdeva, B., Dwivedi, U., & Lahre, J. (2023). Development and Evaluation of Bluetooth based Remote Controlled Battery Powered Drum Seeder. e-Prime-Advances in Electrical Engineering, Electronics and Energy6, 100333. https://doi.org/10.1016/j.prime.2023.100333
  21. Kumar, G. S., & Chinnamuthu, C. R. (2022). Effect of time and method of sowing in wet direct seeded rice. Agricultural Science Digest-A Research Journal42(3), 327-331. https://doi.org/10.18805/ag.D-5461
  22. Kumar, M., Dogra, R., Narang, M., Singh, M., & Mehan, S. (2021). Development and Evaluation of Direct Paddy Seeder in Puddled Field. Sustainability13(5), 2745. https://doi.org/10.3390/su13052745
  23. Kumar, N. S., & Mohankumar, A. P. (2019). Performance Evaluation of a Power Operated Wetland Weeders for Paddy. International Journal of Current Microbiology and Applied Sciences8(04), 2266-2272. https://doi.org/10.20546/ijcmas.2019.804.265
  24. Kumar, S., Karaliya, S. K., & Chaudhary, S. (2017). Precision farming technologies towards enhancing productivity and sustainability of rice-wheat cropping system. International Journal of Current Microbiology and Applied Sciences,6(3), 142-151. https://doi.org/10.20546/ijcmas.2017.603.016
  25. Kumar, V., & Ladha, J. K. (2011). Direct seeding of rice: recent developments and future research needs. Advances in Agronomy111, 297-413. https://doi.org/10.1016/B978-0-12-387689-8.00001-1
  26. Kumar, V., Singh, S., Sagar, V., & Maurya, M. L. (2018). Evaluation of different crop establishment method of rice on growth, yield and economics of rice cultivation in agro-climatic condition of eastern Uttar Pradesh. Journal of Pharmacognosy and Phytochemistry7(3), 2295-2298.
  27. Kumari, C. R., & Sudheer, M. J. (2015). On-farm evaluation of paddy drum seeder (8 row) in farmers fields. Advance Research Journal of Crop Improvement, 6(2), 139-143. https://doi.org/10.15740/has/arjci/6.2/139-143
  28. Kumawat, A., Sepat, S., Kumar, D., Jinger, D., & Kaur, R. (2017). Effect of irrigation scheduling on yield and water-use efficiency of direct-seeded rice (Oryza sativa). Annals of Agricultural Research38(1).
  29. Liu, H., Hussain, S., Zheng, M., Peng, S., Huang, J., Cui, K., & Nie, L. (2014). Dry direct- seeded rice as an alternative to transplanted-flooded rice in Central China. Agronomy for Sustainable Development35, 285-294. https://doi.org/10.1007/s13593-014-0239-0
  30. Luo, W., Chen, M., Kang, Y., Li, W., Li, D., Cui, Y., & Luo, Y. (2022). Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agricultural Water Management, 260, 107285. https://doi.org/10.1016/j.agwat.2021.107285
  31. Manandhar, A., Zhu, H., Ozkan, E., & Shah, A. (2020). Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers. Precision Agriculture21, 1156-1171. https://doi.org/10.1007/s11119-020-09712-8
  32. Maqsood, L., & Khalil, T. M. (2013, October). A review of direct and indirect implications of laser land leveling as agriculture resource conservation technology in Punjab province of Pakistan. In 2013 IEEE Global Humanitarian Technology Conference (GHTC)(pp. 349-354). IEEE. https://doi.org/10.1109/GHTC.2013.6713710
  33. McDonald, R. I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P. A., & Montgomery, M. (2014). Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environmental Change27, 96-105. https://doi.org/10.1016/j.gloenvcha.2014.04.022
  34. Miah, M. M., & Haque, M. E. (2015). Farm level impact study of power tiller operated seeders on service providers' livelihood in some selected sites of Bangladesh. Bangladesh Journal of Agricultural Research 40(4), 669. https://doi.org/10.3329/bjar.v40i4.26941
  35. Mir, M. S., Singh, P., Bhat, T. A., Kanth, R. H., Nazir, A., Al-Ashkar, I., & El Sabagh, A. (2023). Influence of sowing time and weed management practices on the performance and weed dynamics of direct drum seeded rice. ACS Omega8(29), 25861-25876. https://doi.org/10.1021/acsomega.3c01361
  36. Muazu, A., Yahya, A., Ishak, W. I. W., & Khairunniza-Bejo, S. (2014). Machinery utilization and production cost of wetland, direct seeding paddy cultivation in Malaysia. Agriculture and Agricultural Science Procedia2, 361-369. https://doi.org/10.1016/j.aaspro.2014.11.050
  37. Nageswar Bandi, V. R. H., Mathew, M., & Patil, B. (2020). Design, development and testing of a paddy hill seeder. International Journal of Chemical Studies https://doi.org/10.22271/chemi.2020.v8.i4h.10273
  38. Ningthoujam, B., Haribhushan, A., Langpoklakpam, B., & Bhattacharjya, R. (2020). Present status and intervention of new technology to the existing rice cultivation system in South Garo Hills District of Meghalaya, India. International Journal of Pure & Applied Bioscience, 8(5), 153-163. https://doi.org/10.18782/2582-2845.8064
  39. Paman, U., Wahyudy, H. A., & Bahri, S. (2019, November). Farm Power Sources and Machinery Contribution in Small Rice Farming Operations in Kampar Region, Indonesia. In IOP Conference Series: Earth and Environmental Science, 347(1), 012117. IOP Publishing. https://doi.org/10.1088/1755-1315/347/1/012117
  40. Paul, R. A. I., Arthanari, P. M., Pazhanivelan, S., Kavitha, R., & Djanaguiraman, M. (2023). Drone-based herbicide application for energy saving, higher weed control and economics in direct-seeded rice (Oryza sativa). Indian Journal of Agricultural Sciences93(7), 704-709. https://doi.org/10.56093/ijas.v93i7.137859
  41. Pitoyo, J., & Idkham, M. (2021, November). Review of rice transplanter and direct seeder to be applied in Indonesia paddy field. In IOP Conference Series: Earth and Environmental Science,922(1), 012019. IOP Publishing. https://doi.org/10.1088/1755-1315/922/1/012019
  42. Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J., Lundy, M. E., ... & Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature517(7534), 365-368. https://doi.org/10.1038/nature13809
  43. Pradhan, S. C., Nayak, B. C., Mohanty, S., & Behera, B. K. (2014). Performance evaluation of eight-row drum seeder for rice cultivation. Agricultural Engineering International: CIGR Journal, 16(2), 31-38.
  44. Quayum, M. A., & Ali, A. M. (2012). Adoption and diffusion of power tillers in Bangladesh. Bangladesh Journal of Agricultural Research37(2), 307-325. https://doi.org/10.3329/bjar.v37i2.11234
  45. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks172, 107148. https://doi.org/10.1016/j.comnet.2020.107148
  46. Ragesh, K. T., Jogdand, S. V., & Victor, D. V. (2018). Field performance evaluation of power weeder for paddy crop. Current Agriculture Research Journal6(3), 441-448. https://doi.org/10.12944/CARJ.6.3.24
  47. Rajamanickam, A. K., Uvaraja, V. C., Selvamuthukumaran, D., & Surya, K. (2021, February). Fabrication of Paddy Transplanter Machine. In IOP Conference Series: Materials Science and Engineering, 1059(1), 012064. IOP Publishing. https://doi.org/10.1088/1757-899X/1059/1/012064
  48. Rajkumar, R., Vishwanatha, J., Anand, S. R., Karegoudar, A. V., Dandekar, A. T., & Kaledhonkar, M. J. (2017). Effect of Laser Land Leveling on Crop Yield and Water Production Efficiency of Paddy (Oryza sativa) in Tungabhadra Project Command. Journal of Soil Salinity and Water Quality9(2), 213-218.
  49. Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., & Mortimer, A. M. (2007). Weed management in direct‐seeded rice. Advances in agronomy93, 153-255. https://doi.org/10.1016/s0065-2113(06)93004-1
  50. Rao, M. S., & Naidu, D. C. (2019). Drum seeder technology is made easy paddy cultivation, and it is a boon to farmers of North Coastal Zone of Andhra Pradesh. International Journal of Current Microbiology and Applied Sciences, 8(9), 1733-1739. https://doi.org/10.20546/ijcmas.2019.809.200
  51. Rao, S. M., Patil, D., Rao, B. S., & Reddy, G. R. (2014). Performance evaluation of a manually operated paddy drum seeder-a cost saving technology for paddy cultivation. Agricultural Engineering International: CIGR Journal16(1), 75-83.
  52. Rao, T., PB, P. K., & Chandrayudu, E. (2020). Direct seeding rice with drum seeder is made easy to rice cultivation in North Coastal Andhra Pradesh. Journal of Pharmacognosy and Phytochemistry9(6), 1237-1240.
  53. Ratnayake, R. C., & Balasoriya, B. P. (2013). Re-design, fabrication, and performance evaluation of manual conical drum seeder: a case study. Applied Engineering in Agriculture29(2), 139-147. https://doi.org/10.13031/2013.42644
  54. Regalado, M. J. C., & Cruz, R. T. (2010). Tillage and Crop Establishment Technologies for Improved Labor Productivity and Energy Efficiency, and Reduced Costs in Rice Production. In 2010 Pittsburgh, Pennsylvania, June 20-June 23, 2010(p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.29852
  55. Sahoo, P. K., Sahu, N. C., & Rout, K. K. (2012). Performance evaluation of a manually operated rotary dibbler for sowing of groundnut. Agricultural Engineering International: CIGR Journal, 14(4), 56-62.
  56. Sangeetha, S. P., Balakrishnan, A., Sathya Priya, R., & Maheswari, J. (2009). Influence of seeding methods and weed management practices on direct seeded rice. Indian Journal of Weed Science,41(3&4), 210-212. 
  57. Sandhu, L. K., Singh, S., Kaur, R., & Singh, B. (2019). Economic evaluation of laser land leveling technology in Punjab (India) a step towards sustainable development. OIDA International Journal of Sustainable Development12(04), 23-32.
  58. Yaligar, R., Balakrishnan, P., Satishkumar, U., Kanannavar, P. S., Halepyati, A. S., Jat, M. L., & Rajesh, N. (2017). Land leveling and its temporal variability under different leveling, cultivation practices and irrigation methods for paddy. International Journal of Current Microbiology and Applied Sciences6(9), 3784-3789. https://doi.org/10.20546/ijcmas.2017.609.467
  59. Yu, X., Zhang, B., & You, J. (2021, February). Design and Analysis of Film-Covering Direct Seeding Machine in Paddy Field. In Journal of Physics: Conference Series,1744(2), 022126. IOP Publishing. https://doi.org/10.1088/1742-6596/1744/2/022126
  60. Zeng, S., Zhou, Z., Lu, H., Luo, X., Tang, X., Wang, Z., & Wang, P. (2011). Extension and Application of Precision Rice Hill-Drop Drilling Machine. In 2011 Louisville, Kentucky, August 7-10, 2011(p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.37796
  61. Zhang, L. Y., Zhang, Z. X., Li, Q. Y., Yao, J. P., Li, R. H., Zhang, X., & Liang, C. B. (2013). Mechanical automation of rice transplanting and key agronomic techniques. Applied Mechanics and Materials345, 498-501. https://doi.org/10.4028/www.scientific.net/AMM.345.498
CAPTCHA Image