با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه صنایع غذایی، جهاد دانشگاهی، مشهد، ایران

10.22067/jam.2025.90838.1316

چکیده

پلی‌لاکتیک اسید یک پلیمر گرمانرم، زیست‌تخریب‌پذیر و زیست‌فعال است که از منابع تجدیدپذیر مانند چغندر و سیب‌زمینی به‌دست می‌آید. پلی‌لاکتیک اسید پلیمری با ماهیت نسبتاً شکننده است که این ویژگی می‌تواند کاربردهای آن را در صنعت بسته‌بندی محدود سازد. خواص مکانیکی این پلیمر می‌تواند با افزودن نانوذرات و نرم‌کننده‌ها بهبود یابد. در این تحقیق، نانوذرات اکسید روی به میزان یک درصد وزنی پلیمر، پلی‌اتیلن گلیکول 400 بیست درصد وزنی پلیمر و پلی‌سوربات 80، 0.25 درصد وزنی محلول برای بهبود خواص مکانیکی فیلم‌های پلی‌لاکتیک اسید استفاده شدند. اثر این مواد بر فیلم‌ها در دو بازه زمانی مختلف، ماه اول و ماه دهم، با هدف بررسی پیری فیزیکی به‌عنوان مقدمه‌ برای تخریب پلیمر، مورد ارزیابی قرار گرفت. تحلیل‌های آماری بر روی خواص مکانیکی اندازه‌گیری‌شده در این دوره‌ها انجام شد تا تفاوت‌های معنادار میان فیلم‌های تولیدشده شناسایی گردد. نتایج نشان داد که بالاترین استحکام کششی (1.90±82.99 مگاپاسکال، فیلم پلی‌لاکتیک اسید خالص)، ازدیاد طول در نقطه شکست (27.22±76.82 درصد، فیلم پلی‌لاکتیک اسید/پلی‌اتیلن گلیکول/نانوذرات اکسید روی)، چقرمگی (7.89±20.13 ژول بر سانتی‌مترمکعب، فیلم پلی‌لاکتیک اسید/پلی‌اتیلن گلیکول/نانوذرات اکسید روی)، مدول یانگ (0.10±2.74 گیگاپاسکال، فیلم پلی‌لاکتیک اسید خالص) در ماه اول مشاهده شد. نتایج تحلیل واریانس در مورد تأثیر زمان بر هر فیلم نشان داد که در اکثر موارد، خواص مکانیکی پس از ده ماه تغییر معناداری نداشتند. منحنی‌های تنش-کرنش، نشان داد که فیلم پلی‌لاکتیک اسید خالص یک ماده مقاوم است. فیلم دارای نانوذرات و پلی‌سوربات در ماه دهم رفتار شکننده‌ای از خود نشان داد. سایر نمونه‌ها در هر دو ماه اول و دهم رفتاری بین مواد مقاوم و انعطاف‌پذیر نشان دادند.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abubakar, B., Uthman, Y. A., Jatau, A. I., Danbatta, A., Nuhu, H. N., & Mustapha, M. (2022). Misuse of analysis of variance in African biomedical journals: a call for more vigilance. Bulletin of the National Research Centre, 46(232). https://doi.org/10.1186/s42269-022-00924-8
  2. Ahmed, J., Hiremath, N., & Jacob, H. (2016). Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. International Journal of Food Properties, 20(1), 53-67. https://doi.org/10.1080/10942912.2015.1131165
  3. Aljilji, A., Mahmutovic, O., Basic, H., & Prazina, N. (2020). Mechanical properties of dried fruit packaging materials. Periodicals of Engineering and Natural Sciences, 8, 2547-2552. https://doi.org/10.21533/pen.v8i4.1487
  4. ASTM. (2012). Standard Test Method for Tensile Properties of Thin Plastic Sheeting (Vol. ASTM D882-12). USA.
  5. Briassoulis, D., Athanasoulia, I. G., & Tserotas, P. (2022). PHB/PLA plasticized by olive oil and carvacrol solvent-cast films with optimised ductility and physical ageing stability. Polymer Degradation and Stability, 200, 1-21. https://doi.org/10.0.3.248/j.polymdegradstab.2022.109958
  6. Cangialosi, D. (2024). Physical aging and vitrification in polymers and other glasses: Complex behavior and size effects. Polymer Science, 62(9), 1952-1974. https://doi.org/10.1002/pol.20230850
  7. Ching, L. W., Keesan, F. W. M., & Muhamad, I. I. (2022). Optimization of ZnO/GO nanocomposite-loaded polylactic acid active films using response surface methodology. Journal of King Saud University– Science, 34(3). https://doi.org/10.1016/j.jksus.2022.101835
  8. Eslami, Z., Elkoun, S., Robert, M., & Adjalle, K. (2023). A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules, 28(18), 6637. https://doi.org/10.3390/molecules28186637
  9. Falqi, F. H., Bin-Dahman, O. A., Hussain, M., & Al-Harthi, M. A. (2018). Preparation of Miscible PVA/PEG Blends and Effect of Graphene Concentration on Thermal, Crystallization, Morphological, and Mechanical Properties of PVA/PEG (10wt%) Blend. International Journal of Polymer Science, 2018, 1-10. https://doi.org/10.1155/2018/8527693
  10. Guaras, M. P., Alvarez, V. A., & Luduena, L. N. (2019). Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films. Advanced Materials Letters, 10(3), 206-214. https://doi.org/10.5185/amlett.2019.2205
  11. Guz, L., Fama, L., Candal, R., & Goyanes, S. (2017). Size effect of ZnO nanorods on physicochemical properties ofplasticized starch composites. Carbohydrate Polymers, 157, 1611-1619. https://doi.org/10.1016/j.carbpol.2016.11.041
  12. Havstad, M. R., Tucman, I., Katancic, Z., & Pilipovic, A. (2023). Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers, 15(17), 3638. https://doi.org/10.3390/polym15173638
  13. He, H., Duan, Z., & Wang, Z. (2020). Anomalously enhanced toughness of poly (lactic acid) nanocomposites by core-shell particles with high thickness soft shell. Composites: Part A, 128, 105676. https://doi.org/10.1016/j.compositesa.2019.105676
  14. Heydari-Majd, M., Ghanbarzadeh, B., Noghabi, M. S., & Abdolshahi, A. (2020). Poly(lactic acid)based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polymer Bulletin, 79, 97-119. https://doi.org/10.1007/s00289-020-03490-z
  15. Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Najafi, M. A., & Hosseini, M. (2019). A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life, 19, 94-103. https://doi.org/10.1016/j.fpsl.2018.12.002
  16. Heydarian, A., Ahmadi, E., Dashti, F., & Normohammadi, A. (2022). Evaluation of Mechanical and Chemical Parameters of Okra with Chitosan Coating in Nano Packaging Films and Atmospheric Modified Conditions. Journal of Agricultural Machinery, 12(4), 600-612. https://doi.org/10.22067/jam.2021.69257.1027
  17. Izdebska, J. (2016). Aging and Degradation of Printed Materials. In J. Izdebska & S. Thomas (Eds.), Printing on Polymers (pp. 353-370): William Andrew Publishing. https://doi.org/10.1016/B978-0-323-37468-2.00022-1
  18. Janik, W., Nowotarski, M., Ledniowska, K., Biernat, N., Abdullah, Shyntum, D. Y., ..., & Dudek, G. (2023). Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. International Journal of Molecular Sciences, 24(17), 13205. https://doi.org/10.3390/ijms241713205
  19. Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C. H., & Chambin, O. (2017). Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers, 9(7), 289. https://doi.org/10.3390/polym9070289
  20. Khairuddin, E., Pramono, S. B., Utomo, V., Wulandari, A., Zahrotul, W., & Clegg, F. (2016). FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac. Journal of Physics, 776. https://doi.org/10.1088/1742-6596/776/1/012053
  21. Leceta, I., Penalba, M., Arana, P., Guerrero, P., & Caba, K. D. L. (2015). Ageing of chitosan films: Effect of storage time on structure and optical, barrier and mechanical properties. European Polymer Journal, 66, 170-179. https://doi.org/10.1016/j.eurpolymj.2015.02.015
  22. Leon, N., Martinez, A. B., Castejon, P., Arencon, D., & Martinez, P. P. (2017). The fracture testing of ductile polymer films: Effect of the specimen notching. Polymer Testing, 63, 180-193. https://doi.org/10.1016/j.polymertesting.2017.08.022
  23. Li, F. J., Liang, J. Z., Zhang, S. D., & Zhu, B. (2015). Tensile Properties of Polylactide/Poly(ethylene glycol) Blends. Journal of Polymers and the Environment, 23, 407-415. https://doi.org/10.1007/s10924-015-0718-7
  24. Li, W., Li, L., Cao, Y., Lan, T., Chen, H., & Qin, Y. (2017). Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomaterials, 7(8), 1-20. https://doi.org/10.3390/nano7080207
  25. Lin, D., Zheng, Y., Wang, X., Huang, Y., Ni, L., Chen, X., ..., & Wu, D. (2020). Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. International Journal of Biological Macromolecules, 165, 1241-1249. https://doi.org/10.1002/polb.22283
  26. Liu, H., & Zhang, J. (2011). Research Progress in Toughening Modification of Poly(lactic acid). Polymer Physics, 49(15), 1051-1083. https://doi.org/10.1002/polb.22283
  27. Luangtana-Anan, M., Nunthanid, J., & Limmatvapirat, S. (2010). Effect of Molecular Weight and Concentration of Polyethylene Glycol on Physicochemical Properties and Stability of Shellac Film. Journal of Agricultural and Food Chemistry, 58, 12934-12940. https://doi.org/10.1021/jf1031026
  28. Maeda, K., Akatsuka, K., Okuma, G., & Yasumori, A. (2021). Mechanical Properties of CaO–Al2O3–SiO2 Glass-Ceramics Precipitating Hexagonal CaAl2Si2O8 Crystals. Crystals, 11(4), 393. https://doi.org/10.3390/cryst11040393
  29. Maulana, D. S., Mubarak, A. S., & Pujiastuti, D. Y. (2021). The Concentration of polyethylen glycol (PEG) 400 on bioplastic cellulose based carrageenan waste on biodegradability and mechanical properties bioplastic. Paper presented at the The 1st International Conference on Biotechnology and Food Sciences. https://doi.org/10.1088/1755-1315/679/1/012008
  30. Meyers, M. A., & Chawla, K. K. (2008). Mechanical Behavior of Materials. United States of America, New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511810947
  31. Mirkhalaf, S. M., & Fagerstrom, M. (2021). The mechanical behavior of polylactic acid (PLA) films: fabrication, experiments and modelling. Mechanics of Time-Dependent Materials, 25, 119-131. https://doi.org/10.1007/s11043-019-09429-w
  32. Odian, G. (2004). Principles pf polymerization (4 ed.). New York: John Wiley & Sons
  33. Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., & Osiecki, T. (2020). Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 12(12), 2939. https://doi.org/10.3390/polym12122939
  34. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., & Dubois, P. (2013). PLA-ZnO nanocomposite films: water vapor barrier properties and specific enduse characteristics. European Polymer Journal, 49(11), 3471-3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005
  35. Parreidt, T. S., Schott, M., Schmid, M., & Muller, K. (2018). Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings. Molecular Sciences, 19(3), 1-21. https://doi.org/10.3390/ijms19030742
  36. Pivsa-Art, W., Fujii, K., Nomura, K., Aso, Y., Ohara, H., & Yamane, H. (2016). The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). Journal of Applied Polymer Science, 133(8). https://doi.org/10.1002/APP.43044
  37. Sangroniz, A., Zhu, J. B., Tang, X., Etxeberria, A., Chen, E. Y. X., & Sardon, H. (2019). Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nature Communications, 10. https://doi.org/10.1038/s41467-019-11525-x
  38. Schwarz, D., Pagac, M., Petrus, J., & Polzer, S. (2022). Effect of Water-Induced and Physical Aging on Mechanical Properties of 3D Printed Elastomeric Polyurethane. Polymers, 14(24), 5496. https://doi.org/10.3390/polym14245496
  39. Shafiee-Nasab, M., Tabari, M., & Azizi, M. H. (2018). Morphological and mechanical properties of Poly (lactic Acid) /zinc oxide nanocomposite films. Nanomedicine Research Journal, 3(2), 96-101. https://doi:10.22034/nmrj.2018.02.006
  40. Shahid, S., & Gukhool, W. (2020). Experimental Testing and Material Modeling of Anisotropy in Injection Moulded Polymer Materials. (Master), Blekinge Institute of Technology, Karlskrona, Sweden. https://doi.org/10.13140/RG.2.2.12587.87846
  41. Shankar, S., Wang, L. F., & Rhim, J. W. (2018). Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science & Engineering C, 93, 289-298. https://doi.org/10.1016/j.msec.2018.08.002
  42. Song, B. (2022). Dynamic high-rate tensile characterization of metallic materials with a Kolsky tension bar. In B. Song (Ed.), Advances in Experimental Impact Mechanics (pp. 1-40). Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-823325-2.00007-8
  43. Tajari, N., Sadrnia, H., & Hosseini, F. (2023). Effects of ZnO nanoparticles, polyethylene glycol 400, and polyoxyethylene sorbitan ester Tween 80 on PLA films properties. International Polymer Processing, 39(1), 1-14. https://doi.org/10.1515/ipp-2023-4338
  44. Tajari, N., Sadrnia, H., & Hosseini, F. (2024). Investigating the Effect of Storage Time on the Mechanical Properties of Biodegradable Polylactic Acid Film Containing Zinc Oxide Nanoparticles. Journal of Agricultural Machinery, 14(9), 283-299. https://doi.org/10.22067/jam.2023.81863.1160
  45. Tang, Z., Fan, F., Chu, Z., Fan, C., & Qin, Y. (2020). Barrier Properties and Characterizations of Poly(lactic Acid)/ZnO Nanocomposites. Molecules, 25(6), 1310. https://doi.org/10.3390/molecules25061310
  46. Yu, F., Fei, X., He, Y., & Li, H. (2021). Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. International Journal of Biological Macromolecules, 186, 770-779. https://doi:10.1016/j.ijbiomac.2021.07.097
  47. Ziani, K., Oses, J., Coma, V., & Mate, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT- Food Science and Technology, 41, 2159-2165. https://doi.org/10.1016/j.lwt.2007.11.023
CAPTCHA Image