با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

10.22067/jam.2025.90690.1312

چکیده

این مطالعه اثرات ترکیب روغن گردو بر خواص فیزیکی و مکانیکی و ساختاری فیلم‌های خوراکی مبتنی بر سدیم کربوکسی متیل سلولز را با تمرکز بر دو روش افزودن روغن بررسی کرد: پیکربندی‌های دولایه و ترکیبی. بدین منظور ابتدا امولسیون جمع‌کننده روغن گردو (10 درصد روغن) با استفاده از صمغ دانه چیا تثبیت شد و سپس در فرمولاسیون فیلم‌های دولایه و کامپوزیت گنجانده شد SEM نشان داد که فیلم دولایه ساختار منسجم و همگن‌تری را در مقایسه با فیلم کامپوزیت نشان می‌دهد. تجزیه و تحلیل XRD یک ساختار آمورف نیمه‌کریستالی را در تمام فیلم‌ها نشان داد، با فیلم دولایه که قله‌های کمی تیزتر از فیلم کامپوزیت را نشان می‌دهد. آزمایش‌های محتوای رطوبت و حلالیت تأثیر آب‌گریز روغن گردو را برجسته می‌کنند، با فیلم‌های دولایه که به دلیل لایه‌های روغن موضعی سطحی، کمترین میزان رطوبت و حلالیت را نشان می‌دهند. تجزیه و تحلیل حرارتی با استفاده از DSC و TGA بهبود پایداری حرارتی و کاهش وزن را در فیلم دولایه نشان داد. آزمایش‌های مکانیکی نشان داد که فیلم دولایه دارای بیشترین کشیدگی در هنگام شکست (34.3%) و کمترین استحکام کششی (3.4 مگاپاسکال) است. تجزیه و تحلیل رنگ تغییرات قابل‌توجهی را در شاخص‌های رنگی نشان داد، با فیلم‌های کامپوزیتی که اشباع بالاتر و تفاوت رنگ کل را نشان دادند. این یافته‌ها بر پتانسیل امولسیون روغن گردو تثبیت‌شده با صمغ دانه چیا، به‌ویژه در پیکربندی‌های دولایه، برای افزایش خواص عملکردی فیلم‌های مبتنی بر سدیم کربوکسی متیل‌سلولز تاکید می‌کند.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Amal, T., Kasim, A. A., Khaled, N., Lucia, M., & Ioan, S. (2011). Effect of different concentrations of olive oil and oleic acid on the mechanical properties of albumen (egg white) edible films. African Journal of Biotechnology, 10(60), 12963-12972. https://doi.org/10.5897/AJB11.1971
  2. Aydogdu, A., Radke, C. J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110-120. https://doi.org/10.1016/j.ijbiomac.2019.12.255
  3. Bhatia, S., Al-Harrasi, A., Shah, Y. A., Jawad, M., Al-Azri, M. S., Ullah, S., & Aydemir, L. Y. (2023). The Effect of Sage (Salvia sclarea) Essential Oil on the Physiochemical and Antioxidant Properties of Sodium Alginate and Casein-Based Composite Edible Films. Gels, 9(3), 233. https://doi.org/10.3390/gels9030233
  4. Chang, P. R., Yu, J., & Ma, X. (2009). Fabrication and Characterization of Sb 2 O 3 /Carboxymethyl Cellulose Sodium and the Properties of Plasticized Starch Composite Films. Macromolecular Materials and Engineering, 294(11), 762-767. https://doi.org/10.1002/mame.200900138
  5. Chen, Z., Aziz, T., Sun, H., Ullah, A., Ali, A., Cheng, L., & Khan, F. U. (2023). Advances and Applications of Cellulose Bio-Composites in Biodegradable Materials. Journal of Polymers and the Environment, 31(6), 2273-2284. https://doi.org/10.1007/s10924-022-02561-8
  6. Chen, K., Jiang, J., Tian, R., Kuang, Y., Wu, K., Xiao, M., & Jiang, F. (2024). Properties of konjac glucomannan/curdlan-based emulsion films incorporating camellia oil and the preservation effect as coatings on ‘Kyoho’grapes. International Journal of Biological Macromolecules, 258, 128836.‏
  7. Du, H., Liu, C., Unsalan, O., Altunayar-Unsalan, C., Xiong, S., Manyande, A., & Chen, H. (2021). Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. International Journal of Biological Macromolecules, 184, 463-475. https://doi.org/10.1016/j.ijbiomac.2021.06.121
  8. Farajpour, R., Emam Djomeh, Z., Moeini, S., Tavakolipour, H., & Safayan, S. (2020). Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. International Journal of Biological Macromolecules, 149, 941-950. https://doi.org/10.1016/j.ijbiomac.2020.01.175
  9. Fernandes, S. S., Romani, V. P., da Silva Filipini, G., & Martins, V. (2020). Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polymer Engineering & Science, 60(9), 2214-2223. https://doi.org/10.1002/pen.25464
  10. Galus, S. (2018). Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocolloids, 85, 233-241. https://doi.org/10.1016/j.foodhyd.2018.07.026
  11. Hasan, M., Rusman, R., Khaldun, I., Ardana, L., Mudatsir, M., & Fansuri, H. (2020). Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. International Journal of Biological Macromolecules163, 766-775.‏ https://doi.org/10.1016/j.ijbiomac.2020.07.076
  12. Javanmard, M., & Golestan, L. (2008). Effect of Olive Oil and Glycerol on Physical Properties of Whey Protein Concentrate Films. Journal of Food Process Engineering, 31(5), 628-639. https://doi.org/10.1111/j.1745-4530.2007.00179.x
  13. Lee, J.-S., Lee, E., & Han, J. (2020). Enhancement of the water-resistance properties of an edible film prepared from mung bean starch via the incorporation of sunflower seed oil. Scientific Reports, 10(1), 13622. https://doi.org/10.1038/s41598-020-70651-5
  14. Li, F., Yan, Y., Gu, C., Sun, J., Han, Y., Huangfu, Z., & Chen, J. (2022). Preparation and Characterization of Phenolic Acid-Chitosan Derivatives as an Edible Coating for Enhanced Preservation of Saimaiti Apricots. Foods, 11(22), 3548. https://doi.org/10.3390/foods11223548
  15. Lim, L. I., Tan, H. L., & Pui, L. P. (2021). Development and characterization of alginate-based edible film incorporated with hawthorn berry (Crataegus pinnatifida) extract. Journal of Food Measurement and Characterization, 15(3), 2540-2548. https://doi.org/10.1007/s11694-021-00847-4
  16. Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117
  17. Ma, W., Tang, C.-H., Yin, S.-W., Yang, X.-Q., Wang, Q., Liu, F., & Wei, Z.-H. (2012). Characterization of gelatin-based edible films incorporated with olive oil. Food Research International, 49(1), 572-579. https://doi.org/10.1016/j.foodres.2012.07.037
  18. Mirzaee Moghaddam, H., Khosh Taghaza, M. H., Barzgar, M., & Salimi, A. (2014). Investigating the effect of potassium permanganate nano zeolite and storage time on the physicochemical properties of kiwifruit (Hayward variety). Journal of Agricultural Machinery, 4(1), 37-49. https://doi.org/10.22067/jam.v4i1.33163
  19. Mirzaee Moghaddam, H., & Rajaei., A. (2021). Effect of Pomegranate Seed Oil Encapsulated in Chitosan-capric Acid Nanogels Incorporating Thyme Essential Oil on Physicomechanical and Structural Properties of Jelly Candy. Journal of Agricultural Machinery, 11(1), 55-70. https://doi.org/10.22067/jam.v11i1.84882
  20. Mohammadi, M., Mirabzadeh, S., Shahvalizadeh, R., & Hamishehkar, H. (2020). Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. International Journal of Biological Macromolecules, 149, 11-20. https://doi.org/10.1016/j.ijbiomac.2020.01.083
  21. Moore, M. A., & Akoh, C. C. (2017). Enzymatic Interesterification of Coconut and High Oleic Sunflower Oils for Edible Film Application. Journal of the American Oil Chemists’ Society, 94(4), 567-576. https://doi.org/10.1007/s11746-017-2969-z
  22. Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Hamishehkar, H. (2019). Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polymer Testing, 77, 105868. https://doi.org/10.1016/j.polymertesting.2019.04.015
  23. Niu, H., Wang, W., Dou, Z., Chen, X., Chen, X., Chen, H., & Fu, X. (2023). Multiscale combined techniques for evaluating emulsion stability: A critical review. Advances in Colloid and Interface Science, 311, 102813. https://doi.org/10.1016/j.cis.2022.102813
  24. Pereda, M., Amica, G., & Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318-1325. https://doi.org/10.1016/j.carbpol.2011.09.019
  25. Rabrenović, B., Natić, M., Dabić Zagorac, D., Meland, M., & Fotirić Akšić, M. (2023). Bioactive Phytochemicals from Walnut (Juglans) Oil Processing By-products (pp. 537-557). https://doi.org/10.1007/978-3-030-91381-6_25
  26. Ramos, I. F. da S., Fernandes, V. L., Lucena, M. de A., Geronço, M. S., Da Costa, M. P., Rizzo, M. dos S., & Ribeiro, A. B. (2023). Chia seed mucilage (Salvia hispanica): An emerging biopolymer for industrial application. Brazilian Journal of Development, 9(1), 2237-2258. https://doi.org/10.34117/bjdv9n1-154
  27. Tajari, N., Sadrnia, H., & Hosseini, F. (2024). Investigating the Effect of Storage Time on the Mechanical Properties of Biodegradable Polylactic Acid Film Containing Zinc Oxide Nanoparticles. Journal of Agricultural Machinery, 14(3), 283-299. https://doi.org/10.22067/jam.2023.81863.1160
  28. Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M., & Vuong, Q. V. (2017). Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch- ι -carrageenan biodegradable edible film. Food Packaging and Shelf Life, 14, 108-115. https://doi.org/10.1016/j.fpsl.2017.10.002
  29. Tongnuanchan, P., Benjakul, S., Prodpran, T., & Nilsuwan, K. (2015). Emulsion film based on fish skin gelatin and palm oil: Physical, structural and thermal properties. Food Hydrocolloids, 48, 248-259. https://doi.org/10.1016/j.foodhyd.2015.02.025
  30. Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein–chitosan–sunflower oil edible film: Mechanical, barrier and structural properties. LWT - Food Science and Technology, 50(2), 531-537. https://doi.org/10.1016/j.lwt.2012.08.010
  31. Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23(2), 536-547. https://doi.org/10.1016/j.foodhyd.2008.02.009
  32. Wu, Y., & Li, C. (2023). A double-layer smart film based on gellan gum/modified anthocyanin and sodium carboxymethyl cellulose/starch/Nisin for application in chicken breast. International Journal of Biological Macromolecules, 232, 123464. https://doi.org/10.1016/j.ijbiomac.2023.123464
  33. Xiao, J., Wang, W., Wang, K., Liu, Y., Liu, A., Zhang, S., & Zhao, Y. (2016). Impact of melting point of palm oil on mechanical and water barrier properties of gelatin-palm oil emulsion film. Food Hydrocolloids, 60, 243-251. https://doi.org/10.1016/j.foodhyd.2016.03.042
  34. Yan, M. R., Hsieh, S., & Ricacho, N. (2022). Innovative Food Packaging, Food Quality and Safety, and Consumer Perspectives. Processes, 10(4), 747. https://doi.org/10.3390/pr10040747
  35. Yang, Z., Li, M., Li, Y., Huang, X., Li, Z., Zhai, X., & Holmes, M. (2024). Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chemistry, 437, 137891.‏
  36. Zhang, H., Su, S., Liu, S., Qiao, C., Wang, E., Chen, H., & Li, T. (2023). Effects of Chitosan and Cellulose Derivatives on Sodium Carboxymethyl Cellulose-Based Films: A Study of Rheological Properties of Film-Forming Solutions. Molecules, 28(13), 5211. https://doi.org/10.3390/molecules28135211
CAPTCHA Image