نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه ماشینآلات و تجهیزات کشاورزی، دانشکده کشاورزی، دانشگاه بصره، عراق
2 گروه علوم خاک و آب، دانشکده کشاورزی، دانشگاه بصره، عراق
چکیده
خواص خاک از طریق تاثیر بر رشد و کیفیت محصول، نقش اساسی در موفقیت عملیات کشاورزی ایفا میکنند، زیرا توانایی آنها در حفظ آب و جذب مواد مغذی را تعیین کرده و بر تهویه خاک و سیستم ریشه تاثیر میگذارند. هدف از این مطالعه، پیشبینی چگالی ظاهری و مقاومت در برابر نفوذ خاک در سطوح مختلف رطوبت در طول عملیات خاکورزی است. این مطالعه شامل چهار سطح رطوبت: 7، 14، 22 و 28 درصد و سه نوع گاوآهن: گاوآهن برگرداندار، گاوآهن قلمی و گاوآهن بشقابی است. علاوه بر این، نمونههای خاک در دو عمق 15 سانتیمتر و 30 سانتیمتر جمعآوری شدند. تغییر در خواص فیزیکی خاک مورد مطالعه نیز در طول دورههای رشد محصول گندم (پس از خاکورزی، ابتدای فصل و پایان فصل) اندازهگیری میشود. این مطالعه در منطقه قرنه، شمال استان بصره، عراق، در خاک لوم رسی انجام شده است. با تحلیل نتایج، معادلات ریاضی پیشبینی خواص مورد مطالعه با استفاده از روش سطح پاسخ بهدست آمدند. نتایج بهدستآمده نشان میدهند که رطوبت خاک در زمان شخم زدن، نوع شخم، عمق خاک و دوره رشد محصول تاثیر معنیداری بر چگالی ظاهری خاک و مقاومت نفوذ دارند. تیمار رطوبت 14% با ثبت کمترین چگالی ظاهری و کمترین مقاومت نفوذ بهترتیب با مقادیر 1.12 مگاگرم در مترمکعب و 1133 کیلونیوتن در متر مربع، تیمار برتر است. در حالیکه تیمار رطوبت 28% بالاترین چگالی ظاهری و بالاترین مقاومت نفوذ بهترتیب با مقادیر 1.22 مگاگرم در مترمکعب و 1379 کیلونیوتن در مترمربع را به دنبال داشت. نتایج همچنین نشان میدهند که افزایش عمق خاک از 15 به 30 سانتیمتر، چگالی ظاهری و مقاومت نفوذ خاک را بهترتیب 12 و 45.70 درصد افزایش میدهد. شخم زدن با گاوآهن بشقابی خواص خاک را بهبود میبخشد و کمترین چگالی ظاهری و مقاومت نفوذ بهترتیب با مقادیر 1.12 مگاگرم در مترمکعب و 1074 کیلونیوتن در مترمربع را دارد. در حالیکه استفاده از گاوآهن قلمی منجر به ثبت بالاترین چگالی ظاهری و مقاومت نفوذ شد که بهترتیب به 1.22 مگاگرم بر مترمکعب و 1442 کیلونیوتن بر مترمربع رسید. در مورد گاوآهن برگرداندار، چگالی ظاهری و مقاومت نفوذ خاک بهترتیب به 1.18 مگاگرم بر مترمکعب و 1282 کیلونیوتن بر مترمربع رسید. دورههای رشد تاثیر معنیداری بر خواص خاک مورد مطالعه دارند، بهطوریکه در ابتدای فصل رشد کمترین چگالی ظاهری ثبت شد. چگالی ظاهری برای دورههای پس از شخم، در ابتدای فصل و پایان آن بهترتیب به 1.17، 1.13 و 1.23 مگاگرم بر مترمکعب رسید. در حالیکه کمترین و مناسبترین مقاومت نفوذ پس از شخم بهدست آمد، در مقایسه با ابتدا و پایان فصل، مقادیر بهترتیب به 897، 1327 و 1573 کیلونیوتن بر مترمربع رسیدند. نتایج تجزیه و تحلیل دادهها نشان میدهد که مدلهای ریاضی بهدستآمده نتایجی با دقت و کارایی بالا در پیشبینی چگالی ظاهری و مقاومت خاک در برابر نفوذ تحت شرایط آزمایشگاهی ارائه میدهند، با ضریب تعیین (R2) بالا بهترتیب با مقادیر 0.6460 و 0.8114 برای چگالی ظاهری و مقاومت نفوذ خاک.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- AbdulSada, A. J., & Almaliki, S. (2023). Prediction of Soil Compaction using Conventional Tillage Systems under Different Operating Conditions. In IOP Conference Series: Earth and Environmental Science(Vol. 1259, No. 1, p. 012127). IOP Publishing. https://doi.org/10.1088/1755-1315/1259/1/012127
- Ahmadi, H., & Mollazade, K. (2009). Effect of plowing depth and soil moisture content on reduced secondary tillage. Agricultural Engineering International: The CIGR EJournal, 11, 1-9. https://www.researchgate.net/publication/243457629
- Ahmadi, I., & Ghaur, H. (2015). Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction. Journal of Central European Agriculture, 16(4): 489-502. https://doi.org/10.5513/jcea.v16i4.3817
- Almaliki, S., Himoud, M., & Al-Khafajie, A. (2019). Artificial neural network and stepwise approach for predicting tractive efficiency of the tractor (CASE JX75T). The Iraqi Journal of Agricultural Science, 50, 1008-1017. https://doi.org/10.36103/ijas.v50i4.745
- Amin, M., Khan, M. J., Jan, M. T., Rehman, M. U., Tariq, J. A., Hanif, M., & Shah, Z. (2014). Effect of different tillage practices on soil physical properties under wheat in semi-arid environment. Soil Environment, 33(1): 33-37. https://www.cabidigitallibrary.org/doi/full/10.5555/20143226515
- ASABE (2009). ASAE D497.6 Agricultural Machinery Management Data. ASAE. St. Joseph. MI:49085, 1-8. https://cutt.ly/EfMlj1q
- Biberdzic, M., Barac, S., Lalevic, D., Djikic, A., Prodanovic, D., & Rajicic, V. (2020). Influence of soil tillage system on soil compaction and winter wheat yield. Chilean Journal of Agricultural Research, 80(1): 80-89. https://doi.org/10.4067/S0718-58392020000100080
- Black, C. A., Evans, D. D., White, L. L., Ensminger, L. E., & Clark, E. (1965). Method of soil analysis, American Society of Agronomy Madison, Wisconsin, USA. No. 9 part I and II. http://www.worldcat.org/oclc/85962062
- Boydas, M. G., & Turgut, N. )2007(. Effect of tillage implements and operating speeds on soil physical properties and wheat emergence. Turkish Journal of Agriculture and Forestry, 31, 399-412. https://journals.tubitak.gov.tr/agriculture/vol31/iss6/6/
- Dekemati, I., Bogunovic, I., Kisic, I., Radics, Z., Szemők, A., & Birkás, M. (2019). The effects of tillage-induced soil disturbance on soil quality. Polish Journal of Environmental Studies, 28(5), 3665-3673. https://doi.org/10.15244/pjoes/97359
- Hajabbasi, M. A. (2010). Tillage effects on soil compactness and wheat root Journal of Agricultural Science and Technology, 3, 67-77. http://jast.modares.ac.ir/article-23-4803-en.html
- Javadi, A., & Spoor, G. (2006). The effect of spacing in dual wheel arrangements on surface load support and soil compaction Journal of Agricultural Science and Technology, 8, 119-131. http://jast.modares.ac.ir/article-23-2794-en.html
- Kahlon, M., Lal, R., & Varughese, M. (2013). Twenty-Two Years of Tillage and mulching impacts on soil physical characteristics and carbon sequestration in central Ohio. Soil and Tillage Research, 126, 151-158. https://doi.org/10.1016/j.still.2012.08.001
- Kostić, M. M., Rakić, D. Z., Savin, L. Đ., Dedović, N. M., & Simikić, M. Đ. (2016). Application of an original soil tillage resistance sensor in spatial prediction of selected soil properties. Computers and Electronics in Agriculture, 127, 615-624. https://doi.org/10.1016/j.compag.2016.07.027
- Kuhwald, M., Blaschek, M., Minkler, R., Nazemtseva, Y., Schwanebeck, M., Winter, J., & Duttmann, R. (2016). Spatial analysis of long‐term effects of different tillage practices based on penetration resistance. Soil Use and Management, 32(2), 240-249. https://doi.org/10.1111/sum.12254
- Kuroyanagi, N., Kaneko, A., Watanabe, T., Fujita, A., & Odahara, K. (1997). Effect of long- term application of organic matters on upland field. (2) yield of upland crop and physical properties of soil. (Fukuoka Agricultural Research Center, Chikushino, Fukuoka 818 Japan) Bull. Fukuoka Agriculture Research Center, 16, 63-66. https://cir.nii.ac.jp/crid/1571417124296650112
- Martins, R. N., Portes, M. F., e Moraes, H. M. F., Junior, M. R. F., Rosas, J. T. F., and Junior, W. D. A. O. (2021). Influence of tillage systems on soil physical properties, spectral response and yield of the bean crop. Remote Sensing Applications: Society and Environment, 22, 100517. https://doi.org/10.1016/j.rsase.2021.100517
- Naderi-Boldaji, M., Azimi-Nejadian, H., & Bahrami, M. (2024). A Finite Element Model of Soil-Stress Probe Interaction under a Moving Rigid Wheel. Journal of Agricultural Machinery, 14(1). https://doi.org/10.22067/jam.2023.84158.1185
- Nassir, A. J. (2018). Effect of moldboard plow types on soil physical properties under different soil moisture content and tractor speed. Basrah Journal of Agricultural Sciences, 31(1), 48-58. https://doi.org/10.37077/25200860.2018.75
- Rashidi, M., Tabatabaeefar, A., Keyhani, A., & Attarnejad, R. (2007). Non-linear amodeling of pressure-sinkage behaviour in soils using the finite Element method. Journal of Agricultural Science and Technology, 9, 1-13. https://www.sid.ir/EN/VEWSSID/J_pdf/84820070101.pdf
- Salim, A. E. A., Almaliki, S. A., & Nedawi, D. R. (2022). Smart Computing Techniques for Predicting Soil Compaction Criteria under Realistic Field Conditions. Basrah Journal of Agricultural Sciences, 35(1), 188-211. https://doi.org/10.37077/25200860.2022.35.1.15
- Shabanpour, M., Fekri, S., Bagheri, I., Payman, S. H., & Rahimi-Ajdadi, F. (2022). Effects of tillage method and drainage management on some soil physical properties. Journal of Agricultural Sciences, 24-24. https://doi.org/10.15832/ankutbd.856328
- Shittu, K., Oyedele, D., & Babatunde, K. (2017). The effects of moisture content at tillage on soil strength in maize Egyptian Journal of Basic and Applied Sciences, 4(2), 139-142. https://doi.org/10.1016/j.ejbas.2017.04.001
- Taghavifar, H., & Mardani, A. (2014). Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices. Energy, 68, 651-657. https://doi.org/10.1016/j.energy.2014.01.048
- Tahmasebi, M., Gohari, M., Sharifi Malvajerdi, A., & Hedayatipour, A. (2023). Development and field evaluation of a variable-depth tillage tool based on a horizontal pneumatic sensor measurement. Journal of Agricultural Machinery, 13(1), 85. https://doi.org/10.22067/jam.2023.79231.1128
ارسال نظر در مورد این مقاله