نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران
2 گروه مهندسی کشاورزی، دانشگاه ملی مهارت، تهران، ایران
چکیده
در این مطالعه، از توموگرافی کامپیوتری پرتو ایکس بهعنوان یک روش غیرمخرب برای ارزیابی کیفیت داخلی میوه سیب استفاده شد. برای این منظور، سه واریته سیب محلی شامل: رد دلیشز، گلدن دلیشز و گلاب انتخاب شدند. عدد CT تصاویر، که میزان جذب پرتو ایکس را نشان میدهد، با استفاده از نرمافزار K-PACS استخراج شد. پارامترهای کیفیتی مانند میزان محتوای مواد جامد محلول، اسیدیته قابل تیترات، شاخص طعم و pH واریتههای مورد مطالعه اندازهگیری شد. رابطه بین پارامترهای کیفیت و عدد CT بهدستآمده از تصاویر توموگرافی میوهها در قالب مدلهای رگرسیون خطی مورد بررسی قرار گرفت. بر اساس نتایج، همبستگی بین عدد CT و پارامترهای کیفیت در تمامی مدلها بیشتر از 0.900 بود. برای واریتههای مختلف، عدد CT همبستگی مثبتی با میزان اسیدیته قابل تیترات، شاخص طعم، pH و مواد جامد محلول داشت. روابط ارزیابی پارامترهای کیفیتی مربوط به واریته رد دلیشز بیشترین دقت را داشت (با ضرایب تبیین 0.952، 0.964، 0.941 و 0.969 بهترتیب برای میزان شاخص طعم، مواد جامد محلول، اسیدیته و pH). برای تمامی واریتهها، بیشترین همبستگی بین میزان pH و عدد CT مشاهده شد (با ضرایب تبیین 0.969، 0.972 و 0.996 بهترتیب برای واریتههای رد دلیشز، گلدن دلیشز و گلاب). این نشان میدهد که توموگرافی پرتو ایکس میتواند بهطور قابلاعتمادی ویژگیهای کیفیت داخلی را بدون آسیب رساندن به میوهها ارزیابی کند. مدلهای رگرسیون خطی ایجادشده، روش معتبری و قابل بازتولید برای ارزیابی غیرمخرب کیفیت میوه سیب ارائه میدهند.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Abasi, S., Minaei, S., Jamshidi, B., & Fathi, D. (2018). Dedicated non-destructive devices for food quality measurement: A review. Trends in Food Science & Technology, 78, 197-205. https://doi.org/10.1016/j.tifs.2018.05.009
- Akter, T., Bhattacharya, T., Kim, J.-H., Kim, M. S., Baek, I., Chan, D. E., & Cho, B.-K. (2024). A comprehensive review of external quality measurements of fruits and vegetables using nondestructive sensing technologies. Journal of Agriculture and Food Research, 15, 101068. https://doi.org/10.1016/j.jafr.2024.101068
- Al-Maiman, S. A., & Ahmad, D. (2002). Changes in physical and chemical properties during pomegranate (Punica granatum) fruit maturation. Food Chemistry, 76, 437-441. https://doi.org/10.1016/S0308-8146(01)00301-6
- Angeli, L., Populin, F., Morozova, K., Ding, Y., Asma, U., Bolchini, S., & Scampicchio, M. (2024). Comparative analysis of antioxidant activity and capacity in apple varieties: Insights from stopped flow DPPH kinetics, mass spectrometry and electrochemistry. Food Bioscience, 58, 103729. https://doi.org/10.1016/j.fbio.2024.103729
- Arendse, E., Fawole, O. A., Magwaza, L. S., & Opara, U. L. (2018). Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. Journal of Food Engineering, 217, 11-23. https://doi.org/10.1016/j.jfoodeng.2017.08.009
- Argenta, L. C., do Amarante, C. V. T., de Freitas, S. T., Brancher, T. L., Nesi, C. N., & Mattheis, J. P. (2022). Fruit quality of ‘Gala’ and ‘Fuji’ apples cultivated under different environmental conditions. Scientia Horticulturae, 303, 111195. https://doi.org/10.1016/j.scienta.2022.111195
- Asma, U., Morozova, K., Ferrentino, G., & Scampicchio, M. (2023). Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants, 12(7). https://doi.org/10.3390/antiox12071456
- Atamian, H. S., Davila, F. E. L., & Prakash, A. (2023). A transcriptomic study of ‘Granny Smith’ apple fruit response to x-ray irradiation using RNA-Seq. Scientia Horticulturae, 311, 111777. https://doi.org/10.1016/j.scienta.2022.111777
- Bajramova, A., & Spégel, P. (2022). A comparative study of the fatty acid profile of common fruits and fruits claimed to confer health benefits. Journal of Food Composition and Analysis, 112, 104657. https://doi.org/10.1016/j.jfca.2022.104657
- Barreiro, P., Zheng, C., Sun, D.-W., Hernández-Sánchez, N., Pérez-Sánchez, J. M., & Ruiz-Cabello, J. (2008). Non-destructive seed detection in mandarins: Comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biology and Technology, 47(2), 189-198. https://doi.org/10.1016/j.postharvbio.2007.07.008
- Cakmak, H. (2019). Assessment of fresh fruit and vegetable quality with non-destructive methods. In C. M. Galanakis (Ed.), Food Quality and Shelf Life (pp. 303-331). Academic Press. https://doi.org/10.1016/B978-0-12-817190-5.00010-0
- Cam, M., Hisil, Y., & Durmaz, G. (2009). Characterisation of pomegranate juices from ten cultivars grown in Turkey. International Journal of Food Properties, 12, 388-395. https://doi.org/10.1080/10942910701813917
- Caporaso, N., Whitworth, M. B., Fowler, M. S., & Fisk, I. D. (2018). Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chemistry, 258, 343-351. https://doi.org/10.1016/j.foodchem.2018.03.039
- Chen, Q., Zhang, C., Zhao, J., & Ouyang, Q. (2013). Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. TrAC Trends in Analytical Chemistry, 52, 261-274. https://doi.org/10.1016/j.trac.2013.09.007
- Chen, C., Fu, Y., Wan, C., Liu, S., & Chen, J. (2019). Effects of hot water dipping on postharvest storage quality of Xinyu tangerines during cold storage. Food and Fermentation Industries, 45(5), 140-144. https://doi.org/ 13995/j.cnki.11-1802/ts.017835
- Chigwaya, K., Karuppanapandian, T., Schoeman, L., Viljoen, D. W., Crouch, I. J., Nugraha, B., ..., & Crouch, E. M. (2021). X-ray CT and porosity mapping to determine the effect of ‘Fuji’ apple morphological and microstructural properties on the incidence of CO2 induced internal browning. Postharvest Biology and Technology, 174, 111464. https://doi.org/10.1016/j.postharvbio.2021.111464
- Doğan, D. E., Rashid, H. H. R., Lizalo, A., Soysal, D., & Demirsoy, H. (2024). Growth, fruit bearing behavior, yield and quality of some apple cultivars. Scientia Horticulturae, 327, 112762. https://doi.org/10.1016/j.scienta.2023.112762
- Food and Agriculture Organization of the United Nations. (2021). FAO.
- Gao, Y., Liu, Y., Kan, C. N., Chen, M., & Chen, J. Y. (2019). Changes of peel color and fruit quality in navel orange fruits under different storage methods. Scientia Horticulturae, 256, 108522. https://doi.org/10.1016/j.scienta.2019.05.049
- Ghasemi-Varnamkhasti, M., Apetrei, C., Lozano, J., & Anyogu, A. (2018). Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science & Technology, 80, 71-92. https://doi.org/10.1016/j.tifs.2018.07.018
- Guo, M., Li, C., Huang, R., Qu, L., Liu, J., Zhang, C., & Ge, Y. (2023). Ferulic acid enhanced resistance against blue mold of Malus domestica by regulating reactive oxygen species and phenylpropanoid metabolism. Postharvest Biology and Technology, 202, 112378. https://doi.org/10.1016/j.postharvbio.2023.112378
- Groß, D., Zick, K., & Guthausen, G. (2017). Chapter Four- Recent MRI and Diffusion Studies of Food Structures. In G. A. Webb (Ed.), Annual Reports on NMR Spectroscopy (Vol. 90, pp. 145-197). Academic Press.
- Haff, R. P., Slaughter, D. C., Sarig, Y., & Kader, A. (2006). X-Ray Assessment of Translucency in Pineapple. Journal of Food Processing and Preservation, 30(5), 527-533. https://doi.org/10.1111/j.1745-4549.2006.00086.x
- Han, Y., Su, Z., & Du, J. (2023). Effects of apple storage period on the organic acids and volatiles in apple wine. LWT, 173, 114389. https://doi.org/10.1016/j.lwt.2022.114389
- Hasanzadeh, B., Abbaspour-Gilandeh, Y., Soltani-Nazarloo, A., Cruz-Gámez, E. D., Hernández-Hernández, J. L., & Martínez-Arroyo, M. (2022). Non-Destructive Measurement of Quality Parameters of Apple Fruit by Using Visible/Near-Infrared Spectroscopy and Multivariate Regression Analysis. Sustainability, 14(22). https://doi.org/10.3390/su142214918
- Horvat, M., Guthausen, G., Tepper, P., Falco, L., & Schuchmann, H. P. (2014). Non-destructive, quantitative characterization of extruded starch-based products by magnetic resonance imaging and X-ray microtomography. Journal of Food Engineering, 124, 122-127. https://doi.org/10.1016/j.jfoodeng.2013.10.006
- Jiang, Q., Zhang, M., Mujumdar, A. S., & Wang, D. (2023). Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling. Journal of Food Engineering, 343, 111374. https://doi.org/10.1016/j.jfoodeng.2022.111374
- Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2016). Fusion of artificial senses as a robust approach to food quality assessment. Journal of Food Engineering, 171, 230-239. https://doi.org/10.1016/j.jfoodeng.2015.10.007
- Khodabakhshian, R., & Emadi, B. (2016). Determination of ripeness stages of Mazafati variety of date fruit by Raman spectroscopy. Journal of Agricultural Machinery, 6(1), 201-213. https://doi:10.22067/jam.v6i1.34501
- Khodabakhshian, R., Bayati, M. R., & Emadi, B. (2022). Adulteration detection of Sudan Red and metanil yellow in turmeric powder by NIR spectroscopy and chemometrics: The role of preprocessing methods in analysis. Vibrational Spectroscopy, 120, 103372. https://doi.org/10.1016/j.vibspec.2022.103372
- Khodabakhshian, R., Seyedalibeyk Lavasani, H., & Weller, P. (2023). A methodological approach to preprocessing FTIR spectra of adulterated sesame oil. Food Chemistry, 419, 136055. https://doi.org/10.1016/j.foodchem.2023.136055
- Khodabakhshian, R., & Baghbani, R. (2025). Qualitative Analysis of Apple Fruit during Storage using Magnetic Resonance Imaging. Journal of Agricultural Machinery, 15(1), 115-127. https://doi.org/10.22067/jam.2024.87861.1243
- Kokalj, D., Zlatić, E., Cigić, B., Kobav, M. B., & Vidrih, R. (2019). Postharvest flavonol and anthocyanin accumulation in three apple cultivars in response to blue-light-emitting diode light. Scientia Horticulturae, 257, 108711. https://doi.org/10.1016/j.scienta.2019.108711
- Kotwaliwale, N., Singh, K., Kalne, A., Jha, S. N., Seth, N., & Kar, A. (2014). X-ray imaging methods for internal quality evaluation of agricultural produce. Journal of Food Science and Technology, 51(1), 1-15. https://doi.org/10.1007/s13197-011-0485-y
- Kumar, M., Barbhai, M. D., Esatbeyoglu, T., Zhang, B., Sheri, V., Dhumal, S., & Lorenzo, J. M. (2022). Apple (Malus domestica) seed: A review on health promoting bioactivities and its application as functional food ingredient. Food Bioscience, 50, 102155. https://doi.org/10.1016/j.fbio.2022.102155
- Li, X., Zhang, L., Zhang, Y., Wang, D., Wang, X., Yu, L., ..., & Li, P. (2020). Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. Trends in Food Science & Technology, 101, 172-181. https://doi.org/10.1016/j.tifs.2020.05.002
- Lei, T., & Sun, D.-W. (2019). Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends in Food Science & Technology, 88, 527-542. https://doi.org/10.1016/j.tifs.2019.04.013
- Lu, R., & Cen, H. (2013). Non-destructive methods for food texture assessment. In D. Kilcast (Ed.), Instrumental Assessment of Food Sensory Quality (pp. 230-255). Woodhead Publishing.
- Lu, L., Hu, Z., Hu, X., Li, D., & Tian, S. (2022). Electronic tongue and electronic nose for food quality and safety. Food Research International, 162, 112214. https://doi.org/10.1016/j.foodres.2022.112214
- Luna, J. A., Wijesinghe, R. E., Lee, S.-Y., Ravichandran, N. K., Saleah, S. A., Seong, D., & Kim, J. (2024). Non-destructive morphological screening for the assessment of postharvest storage effect on pears stored with apples using optical coherence tomography. Optik, 301, 171678. https://doi.org/10.1016/j.ijleo.2024.171678
- Magwaza, L. S., & Opara, U. L. (2014). Investigating non-destructive quantification and characterization of pomegranate fruit internal structure using X-ray computed tomography. Postharvest Biology and Technology, 95, 1-6. https://doi.org/10.1016/j.postharvbio.2014.03.014
- Martinez, J. J., Melgarejo, P., Hernández, F., Salazar, D. M., & Martinez, R. (2006). Seed characterisation of five new pomegranate (Punica granatum) varieties. Scientia Horticulturae, 110, 241-246. https://doi.org/10.1016/j.scienta.2006.07.018
- Mazhar, M., Joyce, D., Cowin, G., Brereton, I., Hofman, P., Collins, R., & Gupta, M. (2015). Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana) cv. Hass. Postharvest Biology and Technology, 100, 33-40. https://doi.org/10.1016/j.postharvbio.2014.09.006
- Modupalli, N., Naik, M., Sunil, C. K., & Natarajan, V. (2021). Emerging non-destructive methods for quality and safety monitoring of spices. Trends in Food Science & Technology, 108, 133-147. https://doi.org/10.1016/j.tifs.2020.12.021
- Mohd Ali, M., & Hashim, N. (2022). Chapter 37 - Non-destructive methods for detection of food quality. In R. Bhat (Ed.), Future Foods (pp. 645-667). Academic Press.
- Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024
- Pires, T. C. S. P., Dias, M. I., Barros, L., Alves, M. J., Oliveira, M. B. P. P., Santos-Buelga, C., & Ferreira, I. C. F. R. (2018). Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica cv Bravo de Esmolfe). Food Chemistry, 240, 701-706. https://doi.org/10.1016/j.foodchem.2017.08.010
- Rana, S., Gupta, S., Rana, A., & Bhushan, S. (2015). Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Science and Human Wellness, 4(4), 180-187. https://doi.org/10.1016/j.fshw.2015.10.00
- Rodríguez Madrera, R., Pando Bedriñana, R., & Suárez Valles, B. (2017). Enhancement of the nutritional properties of apple pomace by fermentation with autochthonous yeasts. LWT- Food Science and Technology, 79, 27-33. https://doi.org/10.1016/j.lwt.2017.01.021
- Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R. R., & Kumar, P. (2020). Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology, 246(3), 591-598. https://doi.org/10.1007/s00217-020-03432-z
- Schoeman, L., Williams, P., du Plessis, A., & Manley, M. (2016). X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends in Food Science & Technology, 47, 10-24. https://doi.org/10.1016/j.tifs.2015.10.016
- Tang, Y., Wang, F., Zhao, X., Yang, G., Xu, B., Zhang, Y., & Li, L. (2023). A nondestructive method for determination of green tea quality by hyperspectral imaging. Journal of Food Composition and Analysis, 123, 105621. https://doi.org/10.1016/j.jfca.2023.105621
- Tempelaere, A., Minh Phan, H., Van De Looverbosch, T., Verboven, P., & Nicolai, B. (2023). Non-destructive internal disorder segmentation in pear fruit by X-ray radiography and AI. Computers and Electronics in Agriculture, 212, 108142. https://doi.org/10.1016/j.compag.2023.108142
- Tempelaere, A., Van Doorselaer, L., He, J., Verboven, P., & Nicolai, B. M. (2024). BraeNet: Internal disorder detection in ‘Braeburn’ apple using X-ray imaging data. Food Control, 155, 110092. https://doi.org/10.1016/j.foodcont.2023.110092
- Uzhel, A. S., Zatirakha, A. V., Smolenkov, A. D., & Shpigun, O. A. (2018). Quantification of inorganic anions and organic acids in apple and orange juices using novel covalently-bonded hyperbranched anion exchanger with improved selectivity. Journal of Chromatography A, 1567, 130-135. https://doi.org/10.1016/j.chroma.2018.06.065
- Van Dael, M., Lebotsa, S., Herremans, E., Verboven, P., Sijbers, J., Opara, U. L., & Nicolaï, B. M. (2016). A segmentation and classification algorithm for online detection of internal disorders in citrus using X-ray radiographs. Postharvest Biology and Technology, 112, 205-214. https://doi.org/10.1016/j.postharvbio.2015.09.020
- Van Dael, M., Verboven, P., Zanella, A., Sijbers, J., & Nicolai, B. (2019). Combination of shape and X-ray inspection for apple internal quality control: in silico analysis of the methodology based on X-ray computed tomography. Postharvest Biology and Technology, 148, 218-227. https://doi.org/10.1016/j.postharvbio.2018.05.020
- Van De Looverbosch, T., Rahman Bhuiyan, M. H., Verboven, P., Dierick, M., Van Loo, D., De Beenbouwer, J., & Nicolaï, B. (2020). Nondestructive internal quality inspection of pear fruit by X-ray CT using machine learning. Food Control, 113, 107170. https://doi.org/10.1016/j.foodcont.2020.107170
- Wang, Y., Zhang, J., Wang, D., Wang, X., Zhang, F., Chang, D., & Wang, X. (2023). Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chemistry, 415, 135797. https://doi.org/10.1016/j.foodchem.2023.135797
- Zhang, S., Liu, S., Shen, L., Chen, S., He, L., & Liu, A. (2022). Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review. Current Research in Food Science, 5, 1305-1312. https://doi.org/10.1016/j.crfs.2022.08.006
- Zhang, Y., Lin, Y., Tian, H., Tian, S., & Xu, H. (2023). Non-destructive evaluation of the edible rate for pomelo using X-ray imaging method. Food Control, 144, 109358. https://doi.org/10.1016/j.foodcont.2022.109358
- Zoran, I. S., Nikolaos, K., & Ljubomir, S. (2014). Tomato fruit quality from organic and conventional production. In I. S. Zoran, K. Nikolaos, & S. Ljubomir (Eds.), Organic agriculture towards sustainability (pp. 147-169). Rijeka, Croatia: In Tech Europe.
ارسال نظر در مورد این مقاله