با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان شمالی، شیروان، ایران

10.22067/jam.2025.92680.1357

چکیده

حفظ بقایا و ناهمواری خاک در اراضی دیم، فرسایش را تقلیل داده و خاک‌ورزی حفاظتی با بهبود رشد گیاه، در پایداری کشاورزی نقش اساسی دارد. با توجه به اهمیت این روش‌ها و کمبود پژوهش‌های دقیق، مطالعه حاضر به‌منظور انتخاب بهینه‌ترین روش خاک‌ورزی حفاظتی انجام پذیرفت. این تحقیق به‌منظور مدل‌سازی و بهینه‌سازی کیفیت خاک‌ورزی (ناهمواری سطح و دفن بقایا) با استفاده از گاوآهن برگردان‌دار انجام شد. هدف، تعیین بهترین سرعت و عمق شخم گاوآهن برای دستیابی به کیفیت مطلوب خاک‌ورزی است. به‌منظور تعیین شرایط بهینه، تأثیر سرعت پیشروی تراکتور (5، 7.5 و 10 کیلومتر بر ساعت) و عمق شخم (17.5، 22.5 و 27.5 سانتی‌متر) با استفاده از روش سطح پاسخ ارزیابی شد. به‌منظور سنجش ناهمواری سطح خاک و تعیین درصد مدفون شدن بقایای گیاهی، به‌ترتیب از دستگاه پین‌متر و روش پردازش تصویر استفاده شد. نتایج حاکی از تأثیر معنادار کلیه فاکتورهای مستقل بر هر دو شاخص بود (P<0.01). نتایج نشان داد که افزایش عمق شخم منجر به افزایش 36.78 درصدی در میزان ناهمواری سطح خاک گردید، در حالی‌که کاهش عمق شخم با افت 13.74 درصدی در مدفون شدن بقایای گیاهی همراه بود. همچنین، کاهش سرعت پیشروی، کاهش 7.87 درصدی در مدفون شدن بقایا و افزایش 32.82 درصدی در ناهمواری سطح خاک را نشان داد. در شرایط بهینه، مقادیر 10.96 سانتی‌متر برای ناهمواری سطح خاک و 69.34 درصد برای مدفون شدن بقایای گیاهی مشاهده شد. این نتایج در سرعت 5 کیلومتر بر ساعت و عمق شخم 17.5 سانتی‌متر به‌دست آمد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ahmadi Moghaddam, P., Eftekhari, L., Mardani, A., & Khodaverdilo, H. (2016). Determination of crop residues and the physical and mechanical properties of soil in different tillage systems. Journal of Agricultural Machinery, 6(1), 102-113. (in Persian with English abstract). https://doi.org/10.22067/jam.v6i1.32700
  2. Akbari, F., Dahmardeh, M., Morshedi, A., Ghanbari, A., & Khorramdel, S. (2019). Effect of tillage systems and crop residues on soil bulk density and chemical properties under corn (Zea mays)-bean (Phaseolus vulgaris L.) intercropping. Agroecology, 11(3), 1123-1138. (in Persian with English abstract). https://doi.org/10.22067/jag.v11i3.72178
  3. Alcantara, V., Don, A., Vesterdal, L., Well, R., & Nieder, R. (2017). Stability of buried carbon in deep-ploughed forest and cropland soils-implications for carbon stocks. Scientific Reports, 7(1), 5511. https://doi.org/10.1038/s41598-017-05501-y
  4. Azimi-Nejadian, H., Karparvarfard, S. H., & Naderi-Boldaji, M. (2022). Weed seed burial as affected by mouldboard design parameters, ploughing depth and speed: DEM simulations and experimental validation. Biosystems Engineering, 216, 79-92. https://doi.org/10.1016/j.biosystemseng.2022.02.005
  5. Bahrpour, V., Rouhani, A., Abbaspour-Fard, M. H., Zarifneshat, S., & Aghkhani, M. H. (2018). Spatial Variability Analysis and Zoning of Soil Compaction Using Different Geostatistical Methods. Iranian Journal of Biosystems Engineering, 49(3), 329-340. (in Persian with English abstract). https://doi.org/22059/ijbse.2018.227916.664911
  6. Celik, A., & Altikat, S. (2022). The effect of power harrow on the wheat residue cover and residue incorporation into the tilled soil layer. Soil and Tillage Research, 215, 105202. https://doi.org/10.1016/j.still.2021.105202
  7. Chimi-Chiadjeu, O., Le Hegarat-Mascle, S., Vannier, E., Taconet, O., & Dusseaux, R. (2014). Automatic clod detection and boundary estimation from digital elevation model images using different approaches. Catena, 118, 73-83. https://doi.org/10.1016/j.catena.2014.02.003
  8. Clay, D. E., Reicks, G., Carlson, C. G., Moriles‐Miller, J., Stone, J. J., & Clay, S. A. (2015). Tillage and corn residue harvesting impact surface and subsurface carbon sequestration. Journal of Environmental Quality, 44(3), 803-809. https://doi.org/10.2134/jeq2014.07.0322
  9. Danbaba, N., Nkama, I., Badau, M. H., Ukwungwu, M. N., Maji, A. T., Abo, M. E., & Oko, A. O. (2014). Optimization of rice parboiling process for optimum head rice yield: a response surface methodology (RSM) approach. Focus, 18, 154-165. https://doi.org/10.5923/j.ijaf.20140403.02
  10. Fechete-Tutunaru, L. V., Gaspar, F., & Gyorgy, Z. (2019). Soil-tool interaction of a simple tillage tool in sand. E3S Web of Conferences, 85, 08007. https://doi.org/10.1051/e3sconf/20198508007
  11. Feng, Z., Zheng, X., Li, X., Liu, H., Tao, Z., Wang, C., ..., & Song, J. (2024). Soil Surface Roughness Characteristics Under Different Agricultural Tillage Practices-A Case Study in the Black Soil Region of Northeast China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/jstars.2024.3405952
  12. Guo, X., Wang, H., Yu, Q., Ahmad, N., Li, J., Wang, R., & Wang, X. (2022). Subsoiling and plowing rotation increase soil C and N storage and crop yield on a semiarid Loess Plateau. Soil and Tillage Research, 221, 105413. https://doi.org/10.1016/j.still.2022.105413
  13. Hazbawi, I., & Safaeinezhad, M. (2023). Optimizing the Effect of Spike Density and Combine Speed for Reducing Wheat Loss Using Response Surface Methodology. Biomechanism and Bioenergy Research, 2(2), 19-27. https://org/10.22103/BBR.2023.22269.1055
  14. Herodowicz‐Mleczak, K., Piekarczyk, J., Kazmierowski, C., Nowosad, J., & Mleczak, M. (2022). Estimating soil surface roughness with models based on the information about tillage practises and soil parameters. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002578. https://doi.org/10.1029/2021ms002578
  15. Isaak, M., Azawi, A., & Turky, T. (2024). Influence of various tillage systems and tillage speed on some soil physical properties. Progress in Agricultural Engineering Sciences, 20(1), 37-47. https://doi.org/10.1556/446.2024.00070
  16. Kouselou, M., Hashemi, S., Eskandari, I., McKenzie, B., Karimi, E., Rezaei, A., & Rahmati, M. (2018). Quantifying soil displacement and tillage erosion rate by different tillage systems in dryland northwestern Iran. Soil Use and Management, 34(1), 48-59. https://doi.org/10.1111/sum.12395
  17. Langer, S. (2021). Improving irrigation management on hillslope pastures. Journal of New Zealand Grasslands, 83, 135-144. https://doi.org/10.33584/jnzg.2021.83.3495
  18. Lekavicienė, K., Sarauskis, E., Naujokienė, V., & Kriauciunienė, Z. (2019). Effect of row cleaner operational settings on crop residue translocation in strip-tillage. Agronomy, 9(5), 247. https://doi.org/10.3390/agronomy9050247
  19. Li, H., Shen, H., Wang, Y., Wang, Y., & Gao, Q. (2021). Effects of ridge tillage and straw returning on runoff and soil loss under simulated rainfall in the mollisol region of northeast China. Sustainability, 13(19), 10614. https://doi.org/10.3390/su131910614
  20. Liu, J., Chen, Y., & Kushwaha, R. L. (2010). Effect of tillage speed and straw length on soil and straw movement by a sweep. Soil and Tillage Research, 109(1), 9-17. https://doi.org/10.1016/j.still.2010.03.014
  21. Liu, Z., Cao, S., Sun, Z., Wang, H., Qu, S., Lei, N., & Dong, Q. (2021). Tillage effects on soil properties and crop yield after land reclamation. Scientific Reports, 11(1), 1-12. https://doi.org/10.1038/s41598-021-84191-z
  22. Luis-Perez, C. J. (2021). On the Application of a Design of Experiments along with an ANFIS and a Desirability Function to Model Response Variables. Symmetry, 13(5), 897. https://doi.org/10.3390/sym13050897
  23. Ma, Y., Li, Z., Deng, C., Yang, J., Tang, C., Duan, J., Zhang, Z., & Liu, Y. (2022). Effects of tillage-induced soil surface roughness on the generation of surface–subsurface flow and soil loss in the red soil sloping farmland of southern China. Catena, 213, 106230. https://doi.org/10.1016/j.catena.2022.106230
  24. Mahmoudi, A., Jalali, A., Valizadeh, M., & Skandari, I. (2015). The effects of forward speed and depth of conservation tillage on soil bulk density. Journal of Agricultural Machinery, 5(2), 368-380. (in Persian with English abstract). https://doi.org/10.22067/jam.v5i2.28533
  25. Mohammadi, F., Maleki, M. R., & Khodaei, J. (2022). Control of variable rate system of a rotary tiller based on real-time measurement of soil surface roughness. Soil and Tillage Research, 215, 105216. https://doi.org/10.1016/j.still.2021.105216
  26. Mohammadi, M., Karparvarfard, S. H., Kamgar, S., & Rahmatian, M. (2020). Optimization and Evaluation of Working Conditions of New Tillage Blade for Use in Tillage Tools. Journal of Agricultural Machinery, 10(2). 273-287. (in Persian with English abstract). https://doi.org/10.22067/jam.v10i2.73914.
  27. Muhsin, S. J. (2017). Performance study of moldboard plow with two types of disc harrows and their effect on some soil properties under different operating conditions. Basrah Journal of Agricultural Sciences, 30(2), 1-15. https://doi.org/10.33762/bagrs.2017.134097
  28. Orzech, K., Wanic, M., & Załuski, D. (2021). The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture, 11(7), 666. https://doi.org/10.3390/agriculture11070666
  29. Panachuki, E., Bertol, I., Alves, T., Oliveira, P. T. S. D., & Rodrigues, D. B. B. (2015). Effect of soil tillage and plant residue on surface roughness of an oxisol under simulated rain. Revista Brasileira de Ciencia do Solo, 39(1), 268-278. https://doi.org/10.1590/01000683rbcs20150187.
  30. Pereira, R. C., Hedley, M. J., Arbestain, M. C., Bishop, P., Enongene, K. E., & Otene, I. J. J. (2017). Evidence for soil carbon enhancement through deeper mouldboard ploughing at pasture renovation on a Typic Fragiaqualf. Soil Research, 56(2), 182-191. https://doi.org/10.1071/sr17039.
  31. Rahmatian, M., Nematollahi, M., Yeganeh, R., & Sharifi Malvajerdi, A. (2021). Modeling and predicting the relationship between cone index and soil shear strength with draft force of a symmetrical tillage. Agricultural Mechanization and Systems Research, 22(77), 101-118. (in Persian with English abstract). https://doi.org/10.22092/erams.2020.342455.1346.
  32. Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., & Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for Sustainable Development, 37, 1-17. https://doi.org/10.1007/s13593-017-0432-z
  33. Sharafi, S., Mohammadi Ghaleni, M., & Dragovich, D. (2023). Simulated Runoff and Erosion on Soils from Wheat Agroecosystems with Different Water Management Systems, Iran. Land, 12(9), 1790. https://doi.org/10.3390/land12091790
  34. Shevchenko, S., Derevenets-Shevchenko, K., Desyatnyk, L., Shevchenko, M., Sologub, I., & Shevchenko, O. (2024). Tillage effects on soil physical properties and maize phenology. International Journal of Environmental Studies, 81(1), 393-402. https://doi.org/10.1080/00207233.2024.2320032
  35. Shirazi, M., Khademalrasoul, A., & Safieddin Ardebili, M. (2020). Evaluation of different supervised learning smart methods and response surface method to optimize factors affecting erosion (case study: Emamzadeh Watershed of Baghmalek). Iranian Journal of Soil and Water Research, 51(7), 1653-1666. (in Persian with English abstract). https://doi.org/10.22059/ijswr.2020.296715.668485.
  36. Thomsen, L. M., Baartman, J. E. M., Barneveld, R. J., Starkloff, T., & Stolte, J. (2015). Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model. Soil, 1(1), 399-410. https://doi.org/10.5194/soil-1-399-2015
  37. Vidal-Vazquez, E., Miranda, J. G. V., & Paz Gonzalez, A. (2007). Describing soil surface microrelief by crossover length and fractal dimension. Nonlinear Processes in Geophysics, 14(3), 223-235. https://doi.org/10.5194/npg-14-223-2007
  38. Zarifneshat, S., Saeidi Rad, M. H., & Safari, M. (2020). Effect of Conservation and Conventional Tillage on Some Machine and Soil Parameters in Cold Regions of Khorasan Razavi Province. Iranian Journal of Biosystems Engineering, 50(4), 939-949. (in Persian with English abstract). https://doi.org/22059/ijbse.2019.268169.665106
  39. Zeinli, A., Mousavi, R., Jafarian, M., & Bayati, M. R. (2012). Investigation of the Effect of Plow Type, Plowing Speed and Working Depth on Soil Distribution Model on Land. 7th National Congress on Agricultural Machinery Engineering and Mechanization, Shiraz University, Shiraz, Iran. (in Persian).
  40. Zeng, Z., Thoms, D., Chen, Y., & Ma, X. (2021). Comparison of soil and corn residue cutting performance of different discs used for vertical tillage. Scientific Reports, 11(1), 2537. https://doi.org/10.1038/s41598-021-82270-9
  41. Zhou, S., Ren, J., Chen, Q., & Zhang, Z. (2023). Dynamic change patterns of soil surface roughness and influencing factors under different tillage conditions in typical mollisol areas of Northeast China. Agronomy, 13(7), 1817. https://doi.org/10.3390/agronomy13071817
CAPTCHA Image