با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

10.22067/jam.2025.91357.1325

چکیده

ﺍﻣﺮﻭﺯﻩ ﺳﻨﺠﺶ ﺍﺯ ﺩﻭﺭ ﺑﻪﻋﻨﻮﺍﻥ ﻳﮏ ﺍﺑﺰﺍﺭ ﻣﺪﻳﺮﻳﺘﻲ در ﮐﺸﺎﻭﺭﺯﻱ ﺩﻗﻴﻖ محسوب می‌شود، که نقش مهمی در شناسایی پوشش‌های گیاهی متفاوت دارد. انگور از ارزشمندترین محصولات باغبانی است که استان همدان حدود 7.3 درصد از وسعت تاکستان‌های کشور را در اختیار دارد. با این حال توزیع جغرافیایی از تاکستان‌ها در این استان وجود ندارد. هدف اصلی این پژوهش، بررسی رابطه عملکرد محصول انگور با شاخص‌های سنجش از دور پوشش گیاهی در تاکستان‌های استان همدان است. به همین منظور، دقت شناسایی تاکستان‌های استان همدان توسط الگوریتم‌های یادگیری ماشین شامل: ماشین بردار پشتیبان (SVM) و حداقل فاصله (MD) و جنگل تصادفی (RF) با شاخص‌های سنجش از دور پوشش گیاهی شامل: شاخص تفاضلی نرمال‌شده گیاهی (NDVI) و شاخص تفاضلی نرمال‌شده آب (NDWI) برآوردشده از تصاویر ترکیبی اپتیکی و رادارای سنتینل (Sentinel-1 و Sentinel-2) انجام شد. سپس براساس دقیق‌ترین نقشه شناسایی تاکستان‌ها، سری زمانی ماکزیمم شاخص‌های NDVI و NDWI سنجنده‌ی مودیس در تاکستان‌ها در سال‌های 2007 تا 2020 برآورد شد و همبستگی آن‌ها با عملکرد واقعی محصول انگور بررسی شد. مقایسه دقت طبقه‌بندی الگوریتم‌های متفاوت بیانگر برتری الگوریتم RF با شاخص NDWI با بالاترین دقت کلی (%95) و ضریب کاپا (0.95) بود. هم‌چنین تحلیل همبستگی بین شاخص‌های NDVI و NDWI سنجنده مودیس مستخرج از نقشه تاکستان‌ها با عملکرد واقعی انگور نشان از رابطه خطی قوی‌تری بین شاخصNDVI  نسبت به NDWI دارد. یافته‌های این پژوهش که بیانگر دقت بالای شاخص‌های سنجش از دور و الگوریتم‌های یادگیری ماشین در تاکستان‌ها است می‌تواند در پیش‌بینی عملکرد محصول انگور قبل از برداشت، بهبود کیفیت انگور و مدیریت بهینه‌ی آبیاری نقش مهمی داشته باشد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Alex, E. C., Ramesh, K. V., & Sridevi, H. (2017). Quantification and understanding the observed changes in land cover patterns in Bangalore. International Journal of Civil Engineering and Technology, 8(4), 597-603.
  2. Adam, E., Mutanga, O., & Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using Rapid Eye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35, 3440-3458. https://doi.org/10.1080/01431161.2014.903435
  3. Adugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 14(3), https://doi.org/10.3390/rs14030574
  4. Avalos, J. M. M., & Araujo, E. S. (2021). Optimization of Vineyard Water Management: Challenges Strategies, and Perspectives. Water, 13(6), 1-32. https://doi.org/10.3390/w13060746
  5. Ahmad, F. (2012). Detection of change in vegetation cover using multi-spectral and multi-temporal information for district Sargodha, Pakistan. Sociedade & Natureza, 24(3), 557-571. https://doi.org/10.1590/S1982-45132012000300014
  6. Andalibi, F., & Esmaeily, A. (2015). Vegetation Water Content Estimation Using Vegetation Indices of Low Resolution Satellite Data. Geospatial Engineering Journal, 6(2), 11-16. (in Persian).
  7. Arab, S. T., Noguchi, R., Matsushita, S., & Ahamed, T. (2021). Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sensing Applications: Society and Environment, 22, 1-14. https://doi.org/10.1016/j.rsase.2021.100485
  8. Biau, G., & Scornet. E. (2016). A random forest guided tour. Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0481-7
  9. Borgogno-Mondino, E., & Lessio, A. (2018). A FFT-Based approach to explore periodicity of vines/soil properties in vineyard from time series of satellite-derived spectral indices. IEEE International Geoscience and Remote Sensing Symposium(pp. 9078-9081). https://doi.org/10.1109/igarss.2018.8519437
  10. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  11. Brinkhoff, J., Vardanega, J., & Robson, A. J. (2019). Land Cover Classification of Nine Perennial Crops Using Sentinel-1 and -2 Data. Remote Sensing, 12(1), 1-26. https://org/10.3390/rs12010096
  12. Bovolo, F., & Bruzzone, L. (2007). A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1658-1670. https://doi.org/10.1109/tgrs.2007.895835
  13. Basheer, S., Wang, X., Farooque, A. A., Nawaz, R. A., Liu, K., Adekanmbi, T., & Liu, S. (2022). Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques. Remote Sensing, 14(19), 1-18. https://doi.org/10.3390/rs14194978
  14. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
  15. Egbert, S. L., Park, S., & Price, K. P. (2002). Using conservation reserve program maps derived from satellite imagery to characterize landscape structure. Computers and Electronics in Agriculture, 37(1-3), 141-156. https://doi.org/10.1016/S0168-1699(02)00114-X
  16. Ezzatabadipour, H. (2015). Introducing Sentinel2 satellite images. The third national conference on recent innovations in civil engineering, architecture and urban planning in Tehran. (in Persian).
  17. Filgueiras, R., Mantovani, E. C., Althoff, D., FernandesFilho, E. I., & Cunha, F. F. D. (2019). Crop NDVI monitoring based on sentinel 1. Remote Sensing, 11(12), 1-21. https://doi.org/10.3390/rs11121441
  18. Faizizadeh, B., Valizadeh Kamran, K., & Haydari, H. (2008). Estimation of the cultivated area of vineyards in Malekan city using satellite images SPOT5. Geography and Planning, 14(27), 47-60. (in Persian).
  19. Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Ansari, N. A., Geertsema, M., Amiri, M. P., Gholamnia, M., Dou, J., & Ahmad, A. (2021). Performance evaluation of sentinel-2 and landsat8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing, 13(7), 1-21. https://doi.org/10.3390/rs13071349
  20. Geudtner, D., Torres, R., Snoeij, P., & Davidson, M. (2012). Sentinel-1 System Overview. In Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nurnberg, Germany. 23-26.
  21. Goa, B. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
  22. Gogtay, N. J., & Thatte, U. M. (2017). Principles of correlation analysis. Journal of the Association of Physicians of India, 65(3), 78-81.
  23. Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., & Carron, J. (2019). Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning. Sensors, 19(6), 1284. https://doi.org/10.3390/s19061284
  24. Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417-1434. https://doi.org/10.1080/01431168608948945
  25. Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166
  26. Junges, A. H., Fontana, D. C., Anzanello, R., & Bremm, C. (2017). Normalized difference vegetation index obtained by ground-based remote sensing to characterize vine cycle in Rio Grande do Sul, Brazi. Ciencia E Agrotecnologia, 41(5), 543-553. https://doi.org/10.1590/1413-70542017415049016
  27. Karimi, N., Sheshangosht, S., & Eftekhari, M. (2022). Crop type detection using an object-based classification method and multi-temporal Landsat satellite images. Paddy Water Environment, 20(3), 395-412. https://doi.org/10.1007/s10333-022-00901-x
  28. Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing, 10(10), 1509. https://doi.org/10.3390/rs10101509
  29. Lewis, H. G., & Brown, M. (2001). A generalized confusion matrix for assessing area estimates from remotely sensed data. International Journal of Remote Sensing, 22(16), 3223-3235. https://doi.org/10.1080/01431160152558332
  30. Liaw, A., & Wiener, M. (2002). Classification and Regression by RandomForest. R News, 2, 18-22.
  31. Lopez-Martinez, C., & Fabregas, X. (2002). Modeling and reduction of SAR interferometric phase noise in the wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 40(12), 2553-2566. https://doi.org/10.1109/tgrs.2002.806997
  32. Lu, S., Xuan, J., Zhang, T., Bai, X., Tian, F., & Ortega-Farias, S. (2022). Effect of the shadow pixels on evapotranspiration inversion of vineyard: A high-resolution UAV-based and ground-based remote sensing measurements. Remote Sensing, 14(9), 2259. https://doi.org/10.3390/rs14092259
  33. Mirzaei, M., Abbasi, M., Marofi, S., Solgi, E., & Karimi, R. (2018). Spectral discrimination of important orchard species using hyperspectral indices and artificial intelligence approaches, Journal of RS and GIS for Natural Resources, 9(2), 76-92. (in Persian).
  34. MohamadiManavar, H., & Zibazadeh, S. (2022). Distinguishing rain-fed and irrigated crops in Hamadan province using spectral indices of satellite images. Journal of Agricultural Machinery, 12(4), 529-542. (in Persian with English abstract). https://doi.org/10.22067/jam.2021.69074.1022
  35. Nematollahi, H., Ashourloo, D., Alimohammadi, A., Khodabandehloo, & Radiom, S. (2018). Development and application of crop and field condition indices using time-series satellite images of Sentinel-2. Iranian Journal of Remote Sensing & amp: GIS. 10(3), 105-122. (in Persian with English abstract). https://doi.org/10.52547/gisj.13.4.1
  36. Negri, R. G., Dutra, L. V., Sant'Anna, S. J. S., & Lu, D. (2016). Examining region-based methods for land cover classification using stochastic distances. International Journal of Remote Sensing, 37(8), 1902-1921. https://doi.org/10.1080/01431161.2016.1165883
  37. Pal, S., Pandey, S. K., Sharma, S. K., & Nair, R. (2022). Land use and land cover classification of Jabalpur district using minimum distance classifier. The Pharma Innovation, 11(11), 1161-1163.
  38. Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007-1011. https://doi.org/10.1080/01431160512331314083
  39. Pearson, K. (1896). Mathematical contributions to the theory of evolution III. Regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London. Series A, 187, 253-318. https://doi.org/10.1098/rsta.1896.0007
  40. Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., Erickson. T. A., & Richardson, A. D. (2017). A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sensing, 9(8), 64-77. https://doi.org/10.3390/rs9080863
  41. Sekertekin, A., & Zadbagher, E. (2021). Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecological Indicators, 122, 1-11. https://doi.org/10.1016/j.ecolind.2020.107230
  42. Tomas, P., Samuel, O. F., Dongryeol, R. (2018). Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors, 18, 397. https://doi.org/10.3390/s18020397
  43. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  44. Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E. & Rostan, F. (2012,). GMES Sentinel-1 mission. Remote sensing of Environment, 120, 9-24. https://doi.org/10.1016/j.rse.2011.05.028
  45. Vélez, S., Barajas, E., Blanco, P., Rubio, J. A., & Castrillo, D. (2021). Spatio-temporal analysis of satellite imagery (NDVI) to identify terroir and vineyard yeast differences according to appellation of origin (AOP) and biogeographic origin. Multidisciplinary Scientific Journal,4(3), 244-256. https://doi.org/10.3390/j4030020
  46. Vintrou, E., Desbrosse, A., Begue, A., Traore, S., Baron, C., & Lo seen, D. (2012). Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. International Journal of Applied Earth Observation and Geoinformation, 14(1), 83-93. https://doi.org/10.1016/j.jag.2011.06.010
  47. Wacker, A. G., & Landgrebe, D. A. (1972). Minimum Distance Classification in Remote Sensing. LARS Technical Reports. Paper 25, 1-20.
  48. Yu, H., & Kim, S. (2012). SVM Tutorial: Classification, Regression and Ranking. Handbook of Natural Computing, 1, 479-506. https://doi.org/10.1007/978-3-540-92910-9_15
  49. ZareKhoramizi, H., GhafarianMalamiri, H., & Mortaz, M. (2020). Evaluation of supervised classification capability of Landsat-8 and Sentinel-2A Satellite images in determining type and area of Pistachio Cultivars. Journal of Rs and Gis for natural Resources, 11(1), 84-103. (in Persian with English abstract).
  50. Zhang, Q., Chen, J., & Zhang, Y. (2018). Evaluating the performance of NDVI and NDWI for urban vegetation coverage assessment. Remote Sensing, 10(7), 1156.
  51. Zhao, L., Li, Q., Zhang, Y., Wang, H., & Du, X. (2019). Integrating the Continuous Wavelet Transform and a Convolutional Neural Network to Identify Vineyard Using Time Series Satellite Images. Remote Sensing, 11(22), 2641. https://doi.org/10.3390/rs11222641
  52. Zhou, Y., & Huang, J. (2019). Comparison of NDWI and NDVI for assessment of vegetation water content in a semiarid area. Environmental Monitoring and Assessment, 191(4), 228.
  53. Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83-94. https://doi.org/10.1016/j.rse.2011.10.028
CAPTCHA Image