با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

10.22067/jam.2025.92838.1364

چکیده

برنج، به‌عنوان یکی از قدیمی‌ترین محصولات کشاورزی، نقشی اساسی در تأمین تغذیه و معیشت مردم دارد و با توجه به سطح زیرکشت، تولید و مصرف، از جایگاه مهمی برخوردار است. در این راستا، این پژوهش با استفاده از مطالعات اسنادی، مصاحبه‌های میدانی و تحلیل‌های مبتنی بر مدل برنامه‌نویسی ژنتیک چندژنی، به بررسی، مقایسه شاخص‌های انرژی و مدل‌سازی عملکرد ارقام محلی هاشمی و علی‌کاظمی و پرمحصول فجر و شیرودی پرداخته است و داده‌های آن از 385 مالک و کشاورز این دو نوع رقم در شهرستان رشت جمع‌آوری شده است. در مقایسه با ارقام محلی، ارقام پرمحصول از نظر شاخص‌های نسبت انرژی، بهره‌وری انرژی و انرژی ویژه به‌ترتیب 76.47، 76.92، 77.70 درصد و افزوده خالص انرژی بیش از 15 برابر بهبود داشت. در مدل برنامه‌نویسی ژنتیک چندژنی، اعتبارسنجی متقاطع نشان داد مدل با 65 درصد داده‌ها نتایجی مشابه استفاده از 80 درصد داده‌ها ارائه می‌دهد. با افزایش عمق درخت از 4 به 12، بیشترین ضریب تبیین برای عمق درخت 4 در رقم محلی 0.95 و در رقم پرمحصول 0.94 بود. همچنین، در تحلیل حساسیت اثر نهاده‌های مواد آلی (کمپوست، بذر، کاه و کلش برنج) و سوخت و برق به‌عنوان عامل اصلی در برآورد عملکرد شلتوک در دو رقم شناسایی شدند. نهاده‌های مواد آلی با بهبود حاصلخیزی خاک، و سوخت و برق با تأثیرگذاری بر عملکرد ماشین‌های کشاورزی و کارایی عملیات زراعی، نقش کلیدی در عملکرد پایدار مزارع شلتوک دارند. یافته‌های این تحقیق می‌تواند به تولیدکنندگان کمک کند تا با مدیریت مناسب منابع مصرفی، کیفیت و کمیت محصول خود را بهبود بخشند.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Aghkhani, M. H., Ahmadipour, S., Soltanali, H., & Rohani, A. (2018). Greenhouse gas emissions, energy use, and cost analysis of citrus production: A case study of Mazandaran Province. Quarterly Journal of Energy Policy and Planning Research, 4(3), 181-229. (in Persian with English abstract).
  2. Ali, M., & Deo, R. C. (2020). Modeling wheat yield with data-intelligent algorithms: Artificial neural network versus genetic programming and minimax probability machine regression. In Handbook of Probabilistic Models. https://doi.org/10.1016/B978-0-12-816514-0.00002-3
  3. Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programming algorithm: A new hybrid copula-driven approach. Agricultural and Forest Meteorology, 263, 428-448. https://doi.org/10.1016/j.agrformet.2018.09.002
  4. Almassi, M., Kiani, S., & Loveimi, N. (2014). Principles of Agricultural Mechanization (5th ed.). Gofteman Andisheh Moaser.
  5. Ayoubikia, R., Janatrostami, S., Ashrafzadeh., A., Shafiei-Sabet, (2019). Optimization of regional water resources allocation in Sefidroud river basin by social equity approach. Iran-Water Resources Research, 14(5), 205-218. (in Persian with English abstract).
  6. Babaee, M., Maroufpoor, S., Jalali, M., Zarei, M., & Elbeltagi, A. (2021). Artificial intelligence approach to estimating rice yield. Irrigation and Drainage, 70(4), 732-742. https://doi.org/10.1002/ird.2566
  7. Bagheri, S. M., Gheysari, S., Ayoubi, N., & Lavaee. (2013). Silage maize yield prediction using artificial neural networks. Journal of Plant Production Research, 19(14), 77-96. (in Persian with English abstract).
  8. Barikloo, A., Alamdari, P., Moravej, K., & Servati, M. (2017). Prediction of irrigated wheat yield by using hybrid algorithm methods of artificial neural networks and genetic algorithm. Journal of Water and Soil, 31(3), 715-726. (in Persian with English abstract). https://doi.org/10.22067/jsw.v31i3.56158
  9. Chauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking: An application of data envelopment analysis. Energy Conversion and Management, 47, 1063-1085. https://doi.org/10.1016/j.enconman.2005.07.004
  10. Cochran, W. G. (1977). Sampling Techniques. New York: John Wiley and Sons Publishing.
  11. Gu, J., & Yang, J. (2022). Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment, 1(1), 7-14. https://doi.org/10.1016/j.crope.2022.03.003
  12. Gummert, M., Cabardo, C., Quilloy, R., Aung, Y. L., Thant, A. M., Kyaw, M. A., Labios, R., Htwe, N. M., & Singleton, G. R. (2020). Assessment of post-harvest losses and carbon footprint in intensive lowland rice production in Myanmar. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-76639-5
  13. Guo, Y. (2024). Integrating genetic algorithm with ARIMA and reinforced random forest models to improve agriculture economy and yield forecasting. Soft Computing, 28, 1685-1706. https://doi.org/10.1007/s00500-023-09516-8
  14. Hafezi, N., Bahrami, H., Sheikh Davoodi, M. J., & Alavi, S. E. (2020). Hybrid artificial neural network with metaheuristic algorithms for predicting sugarcane yield. Iranian Journal of Biosystems Engineering, 51 (3), 515-526. (in Persian with English abstract). https://doi.org/10.22059/ijbse.2020.290905.665234
  15. Haroni, S., Sheikhdavoodi, M. J., Kiani Deh Kiani, M. (2018). Application of artificial neural networks for predicting the yield and GHG emissions of sugarcane production. Journal of Agricultural Machinery, 8(2(, 389-401. (in Persian with English abstract). https://doi.org/10.22067/jam.v8i2.52870
  16. Hushyar, N., & Ashraf Talesh, S. S. (2016). Optimum prediction of the T-shape mixing chamber behavior based on multi-objective genetic programming. Modares Mechanical Engineering, 16(12), 612-616. (in Persian with English abstract).
  17. Janatrostami S, & Mahmoudpour H. (2020). Environmental assessment of groundwater pumping by using water and energy nexus. Journal of Water and Soil Science, 23 (4), 227-240. (in Persian with English abstract). https://doi.org/10.47176/jwss.23.4.40841
  18. Janatrostami, S., Kholghi, M., & Bozorg Haddad, O. (2010). Management of reservoir operation system using improved harmony search algorithm. Water and Soil Science, 20(3), 61-71. (in Persian with English abstract).
  19. Kavoosi Kalashami, M., Zanipoor, M., Yavari, G., & Adibi, S. (2017). Evaluation of the effect of national plan implemention of increasing rice production on technical efficiency of paddy farms (A case study: Pirbazar region of Rasht city). Cereal Research, 7(2), 235-246. (in Persian with English abstract). https://doi.org/10.22124/c.2017.2549
  20. Kima, A. S., Traore, S., Wang, Y. M., & Chung, W. G. (2014). Multi-genes programing and local scale regression for analyzing rice yield response to climate factors using observed and downscaled data in Sahel. Agricultural Water Management, 146, 149-162. https://doi.org/10.1016/j.agwat.2014.08.007
  21. Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering. Energy and Biomass Engineering, 5, 330.
  22. Lu, M., Bi, Y., Xue, B., Hu, Q., Zhang, M., Wei, Y., Yang, P., & Wu, W. (2022). Genetic programming for high level feature learning in crop classification. Remote Sensing, 14, 3982. https://doi.org/10.3390/rs14163982
  23. Mahmud, T., Datta, N., Chakma, R., Das, U. K., Aziz, M. T., Islam, M., Salimullah, A. H. M., Hossain, M. S., & Andersson. K. (2024). An approach for crop prediction in agriculture: integrating genetic algorithms and machine learning. IEEE Access, 12, 173583-173598. https://doi.org/10.1109/ACCESS.2024.3478739
  24. Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., Borodulin, A., & Tynchenko, Y. (2024). Predicting sustainable crop yields: Deep learning and explainable AI tools. Sustainability, 16, 9437. https://doi.org/10.3390/su16219437
  25. Mirshekari, F. )2011(. Optimization of energy use efficiency (energy ratio) and revenue in smallholder agriculture of Naragh City. Faculty of Agriculture University of Tehran, Tehran.
  26. Nassiri, S. M., & Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Applied Energy, 86(7), 1320-1325. https://doi.org/10.1016/j.apenergy.2008.10.007
  27. Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51. https://doi.org/10.1016/S0960-1481(03)00135-6
  28. Panahi, S., Samadianfard, S., & Nazemi, A. H. (2021). Modeling the yield of rain-fed wheat, barley and alfalfa products using support vector regression and genetic programming. Journal of Water and Soil Science, 32(2), 97-111. (in Persian with English abstract). https://doi.org/10.22034/ws.2021.35741.2287
  29. Peng, X., Guan, X., Zeng, Y., & Zhang, J. (2024). Artificial intelligence-driven multi-energy optimization: promoting green transition of rural energy planning and sustainable energy economy. Sustainability, 16, 4111. https://doi.org/10.3390/su16104111
  30. Sadeghi, S. M. (2023). Investigating the effect of water stress and different levels of organic and chemical fertilizers on rice yield and its components. Iranian Journal of Irrigation and Drainage, 17(5), 843-855. (in Persian with English abstract).
  31. Shahdi Kumleh, A., Seyedi S. R., Haghighi Hasanalideh A. R., & Karamniya. S. )2021(. Effect of source and application rate of organic fertilizers on grain yield and quality of local and improved rice (Oryza sativa) cultivars. Iranian Journal of Crop Sciences, 23(3), 278-289. (in Persian with English abstract).
  32. Sharifi, S., Hafezi, N., & Aghkhani, M. H. (2025). Investigation and optimization of energy consumption and yield modeling of two rice cultivars using the genetic-artificial bee colony algorithm. Journal of Agricultural Machinery, 15(2), 145-164. https://doi.org/10.22067/jam.2022.77064.1108
  33. Taghizadeh Merjerdi, R., Seyed Jalali, S. A., & Sarmadian, F. (2016). Spatial prediction of wheat crop yield using digital soil mapping in Gotvand, Khuzestan Province. Iranian Journal of Agricultural Sciences, 47(1), 175-184. (in Persian with English abstract). https://doi.org/10.22059/ijswr.2016.57989
  34. Taheri-Rad, A., Khojastehpour, M., Rohani, A., & Khoramdel, S. (2017). Assessing the energy consumption efficiency of different long grain rice varieties in Golestan province. Cereal Research, 7(1), 51-66. (in Persian with English abstract). https://doi.org/10.22124/c.2017.2428
  35. Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135, 192-198. https://doi.org/10.1016/j.energy.2017.06.089
  36. Tchonkouang, R. D., Onyeaka, H., & Nkoutchou, H. (2024). Assessing the vulnerability of food supply chains to climate change-induced disruptions. Science of The Total Environment, 920, 171047. https://doi.org/10.1016/j.scitotenv.2024.171047
  37. Tung, C. P., Lee, T. Y., Yang, Y. C., & Chen, Y. J. (2009). Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon. Environmental Modelling & Software 24, 1062-1072. https://doi.org/10.1016/j.envsoft.2009.02.012
  38. Van-Hung, N., Sander, B. O., Quilty, J., Balingbing, C., Castalone, A. G., Romasanta, R., Alberto, M. C. R., Sandro, J. M., Jamieson, C., & Gummert, M. (2019). An assessment of irrigated rice production energy efficiency and environmental footprint with in-field and off-field rice straw management practices. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-53072-x
  39. Zeinalie, M., Golabi, M. R., Azari, A., & Farzi, S. (2022). The study of the performance of the Modflow conceptual model and the genetic programming simulator meta model in the modeling of the hydrograph of the aquifer (Case Study: Lour-Andimeshk Plain). Journal of Aqiufer and Qanat, 1(4), 1-15. (in Persian with English abstract). https://doi.org/10.22077/jaaq.2018.1236.1000
CAPTCHA Image