با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی انگلیسی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مهندسی بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در این مطالعه، فرآیند خشک کردن سیب با استفاده از یک خشک‌کن خورشیدی ترکیبی جدید، از نوع خشک‌کن ترکیبی رفرکتنس ویندو مجهز به کلکتور سهموی خطی مورد بررسی قرار گرفت. سینتیک خشک کردن، بازدهی انرژی و نقش خشک‌کن در کاهش مصرف انرژی و انتشار گازهای آلاینده ارزیابی شد. آزمایش‌های خشک کردن با سه منبع انرژی شامل انرژی تجدیدناپذیر مرسوم (RW)، خشک کردن با کمک خورشیدی (PRW) و خشک کردن کامل خورشیدی (SRW) انجام شد. میانگین بازده اپتیکی نوری و بازده حرارتی کلکتور PTC در طول ساعات آزمایش به‌ترتیب  62.01% و 49.31% به‌دست آمد. کمترین مصرف انرژی ویژه در روش SRW به میزان (kWh kg-1) 10.24به‌دست آمد. علاوه بر این، نتایج نشان داد که انرژی خورشیدی برای روش‌های خشک کردن ترکیبی PRW-65، PRW-75، PRW-85 و روش تماما خورشیدی SRW به‌ترتیب 54.91، 52.62، 48.85 و 70.30% از مصرف انرژی کل را به خود اختصاص داده و به همین مقدار از مصرف انرژی‌های تجدیدناپذیر کاهش دادند. با استفاده از کلکتور خورشیدی در روش‌های خشک کردن PRW و SRW، انتشار CO2 به‌ترتیب 54.64 و 80.94% در مقایسه با روش RW معمولی کاهش یافت. به‌طور کلی، به‌کارگیری انرژی خورشیدی در روش‌های PRW و SRW باعث بهبود پارامترهای انرژی و کاهش انتشار آلاینده‌ها در طول فرآیند خشک‌کردن شد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Awan, A. B., Khan, M. N., Zubair, M., & Bellos, E. (2020). Commercial parabolic trough CSP plants: Research trends and technological advancements. Solar Energy211, 1422-1458.‏ https://doi.org/10.1016/j.solener.2020.09.072
  2. Baeghbali, V., Niakousari, M., & Farahnaky, A. (2016). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT-Food science and technology, 66, 34-40. https://doi.org/10.1016/j.lwt.2015.10.017
  3. Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology (Campinas), 36(1), 145-150. https://doi.org/10.1590/1678-457X.0068
  4. Bellos, E., & Tzivanidis, C. (2018). Enhancing the performance of evacuated and non-evacuated parabolic trough collectors using twisted tape inserts, perforated plate inserts and internally finned absorber. Energies11(5), 1129.‏ https://doi.org/10.3390/en11051129
  5. Bellos, E., & Tzivanidis, C. (2020). Polynomial expressions for the thermal efficiency of the parabolic trough solar collector. Applied Sciences, 10(19), 6901.‏ https://doi.org/10.3390/app10196901
  6. Camci, M. (2020). Thermodynamic analysis of a novel integration of a spray dryer and solar collectors: A case study of a milk powder drying system. Drying Technology, 38(3), 350-360.‏ https://doi.org/10.1080/07373937.2019.1570935
  7. Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. Journal of Food Engineering111(1), 135-148.‏ https://doi.org/10.1016/j.jfoodeng.2012.01.010
  8. Chafie, M., Aissa, M. F. B., & Guizani, A. (2018). Energetic end exergetic performance of a parabolic trough collector receiver: An experimental study. Journal of Cleaner Production171, 285-296.‏ https://doi.org/10.1016/j.jclepro.2017.10.012
  9. Elmohlawy, A. E., Kazanjan, B. I., & Ochkov, V. F. (2018, November). Modeling and performance prediction of solar parabolic trough collector for hybrid thermal power generation plant under different weather conditions. In AIP Conference Proceedings(Vol. 2047, No. 1). AIP Publishing.‏ https://doi.org/10.1063/1.5081635
  10. Gaul, H., & Rabl, A. (1980). Incidence-angle modifier and average optical efficiency of parabolic trough collectors. Journal of solar energy engeenering. 16-21 https://doi.org/10.1115/1.3266115
  11. Gharehdaghi, S., Moujaes, S. F., & Nejad, A. M. (2021). Thermal-fluid analysis of a parabolic trough solar collector of a direct supercritical carbon dioxide Brayton cycle: A numerical study. Solar Energy220, 766-787.‏ https://doi.org/10.1016/j.solener.2021.03.039
  12. Kajavali, A., Sivaraman, B., & Kulasekharan, N. (2014). Investigation of heat transfer enhancement in a parabolic trough collector with a modified absorber. International Energy Journal14(4).‏
  13. Kalogirou, S. A. (2023). Solar energy engineering: processes and systems. Elsevier.‏ 51-123. https://doi.org/10.1016/B978-0-12-397270-5.00002-9
  14. Kumar, P., & Singh, D. (2020). Advanced technologies and performance investigations of solar dryers: A review. Renewable Energy Focus35, 148-158.‏ https://doi.org/10.1016/j.ref.2020.10.003
  15. Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., & Srivastav, P. P. (2021). Refractance Window-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024.‏ https://doi.org/10.1016/j.fufo.2021.100024
  16. Manikandan, G. K., Iniyan, S., & Goic, (2019). Enhancing the optical and thermal efficiency of a parabolic trough collector–A review. Applied Energy235, 1524-1540.‏ https://doi.org/10.1016/j.apenergy.2018.11.048
  17. Mohammadi, I., Tabatabaekoloor, R., & Motevali, A. (2019). Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices. Energy170, 149-158.‏ https://doi.org/10.1016/j.energy.2018.12.099
  18. Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., & Khoshtaghaza, M. H. (2014). Comparison of energy parameters in various dryers. Energy Conversion and Management87, 711-725.‏ https://doi.org/10.1016/j.enconman.2014.07.012
  19. Nazari, S., Shahhoseini, O., Sohrabi-Kashani, A., Davari, S., Paydar, R., & Delavar-Moghadam, Z. (2010). Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants. Energy35(7), 2992-2998.‏ https://doi.org/10.1016/j.energy.2010.03.035
  20. Nindo, C. I., Feng, H., Shen, G. Q., Tang, J., & Kang, D. H. (2003). Energy utilization and microbial reduction in a new film drying system. Journal of Food Processing and Preservation27(2), 117-136.‏ https://doi.org/10.1111/j.1745-4549.2003.tb00506.x
  21. Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering241, 75-87.‏ https://doi.org/10.1016/j.jfoodeng.2018.08.008
  22. Padhi, S., & Dwivedi, M. (2022). Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods5, 100101.‏ https://doi.org/10.1016/j.fufo.2021.100101
  23. Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance window drying of foods: A review. Journal of Food Engineering, 222, 267-275.‏ https://doi.org/10.1016/j.jfoodeng.2017.11.032
  24. Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology12, 1646-1658.‏ https://doi.org/10.1007/s11947-019-02334-7
  25. Rajoriya, D., Shewale, S. R., Bhavya, M. L., & Hebbar, H. U. (2020). Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science & Emerging Technologies66, 102530.‏ https://doi.org/10.1016/j.ifset.2020.102530
  26. Samadi, S. H., & Loghmanieh, I. (2013). Evaluation of energy aspects of apple drying in the hot-air and infrared dryers. Energy Research Journal4(1), 30-38.‏ https://doi.org/10.3844/erjsp.2013.30.38
  27. Seyfi, A., Asl, A. R., & Motevali, A. (2021). Comparison of the energy and pollution parameters in solar refractance window (photovoltaic-thermal), conventional refractance window, and hot air dryer. Solar Energy229, 162-173.‏ https://doi.org/10.1016/j.solener.2021.05.094
  28. Shahraki, A., Khojastehpour, M., Golzarian, M. R., & Azarpazhooh, E. (2024). Simulation of Heat and Mass Transfer in a Refractance Window Dryer for Aloe vera gel. Journal of Agricultural Machinery14(2), 197-214.‏ https://doi.org/10.22067/jam.2023.80368.1141
  29. Shirole, A., Wagh, M., & Kulkarni, V. (2021). Thermal Performance Comparison of Parabolic trough collector (PTC) using various Nanofluids. International Journal of Renewable Energy Development10(4), 875.‏ https://doi.org/10.14710/ijred.2021.33801
  30. Sookramoon, K. (2016). Design of a Solar Tunnel Dryer Combined Heat with a Parabolic Trough for Paddy Drying. Applied Mechanics and Materials851, 239-243.‏ https://doi.org/10.4028/www.scientific.net/AMM.851.239
  31. Taghinezhad, E., Kaveh, M., Szumny, A., Figiel, A., & Blasco, J. (2023). Qualitative, energy and environmental aspects of microwave drying of pre-treated apple slices. Scientific Reports13(1), 16152.‏ https://doi.org/10.1038/s41598-023-43358-6
  32. Teymori-Omran, M., Askari Asli-Ardeh, E., Taghinezhad, E., Motevali, A., Szumny, A., & Nowacka, M. (2023). Enhancing Energy Efficiency and retention of bioactive compounds in apple drying: Comparative analysis of combined hot air–infrared drying strategies. Applied Sciences13(13), 7612.‏ https://doi.org/10.3390/app13137612
  33. Teymori-omran, M., Motevali, A., Seyedi, S. R. M., & Montazeri, M. (2021). Numerical simulation and experimental validation of a photovoltaic/thermal system: Performance comparison inside and outside greenhouse. Sustainable Energy Technologies and Assessments46, 101271.‏ https://doi.org/10.1016/j.seta.2021.101271
  34. Tiwari, S., Tiwari, G. N., & Al-Helal, I. M. (2016). Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy133, 421-428.‏ https://doi.org/10.1016/j.solener.2016.04.033
  35. Waghmare, R. (2021). Refractance window drying: A cohort review on quality characteristics. Trends in Food Science & Technology110, 652-662.‏ https://doi.org/10.1016/j.tifs.2021.02.030
  36. Wang, Q., Yao, Y., Shen, Z., & Yang, H. (2023). A hybrid parabolic trough solar collector system integrated with photovoltaics. Applied Energy329, 120336.‏ https://doi.org/10.1016/j.apenergy.2022.120336
CAPTCHA Image