نوع مقاله : مقاله پژوهشی انگلیسی
نویسندگان
1 گروه مهندسی بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران
2 گروه مهندسی بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
چکیده
در این مطالعه، فرآیند خشک کردن سیب با استفاده از یک خشککن خورشیدی ترکیبی جدید، از نوع خشککن ترکیبی رفرکتنس ویندو مجهز به کلکتور سهموی خطی مورد بررسی قرار گرفت. سینتیک خشک کردن، بازدهی انرژی و نقش خشککن در کاهش مصرف انرژی و انتشار گازهای آلاینده ارزیابی شد. آزمایشهای خشک کردن با سه منبع انرژی شامل انرژی تجدیدناپذیر مرسوم (RW)، خشک کردن با کمک خورشیدی (PRW) و خشک کردن کامل خورشیدی (SRW) انجام شد. میانگین بازده اپتیکی نوری و بازده حرارتی کلکتور PTC در طول ساعات آزمایش بهترتیب 62.01% و 49.31% بهدست آمد. کمترین مصرف انرژی ویژه در روش SRW به میزان (kWh kg-1) 10.24بهدست آمد. علاوه بر این، نتایج نشان داد که انرژی خورشیدی برای روشهای خشک کردن ترکیبی PRW-65، PRW-75، PRW-85 و روش تماما خورشیدی SRW بهترتیب 54.91، 52.62، 48.85 و 70.30% از مصرف انرژی کل را به خود اختصاص داده و به همین مقدار از مصرف انرژیهای تجدیدناپذیر کاهش دادند. با استفاده از کلکتور خورشیدی در روشهای خشک کردن PRW و SRW، انتشار CO2 بهترتیب 54.64 و 80.94% در مقایسه با روش RW معمولی کاهش یافت. بهطور کلی، بهکارگیری انرژی خورشیدی در روشهای PRW و SRW باعث بهبود پارامترهای انرژی و کاهش انتشار آلایندهها در طول فرآیند خشککردن شد.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Awan, A. B., Khan, M. N., Zubair, M., & Bellos, E. (2020). Commercial parabolic trough CSP plants: Research trends and technological advancements. Solar Energy, 211, 1422-1458. https://doi.org/10.1016/j.solener.2020.09.072
- Baeghbali, V., Niakousari, M., & Farahnaky, A. (2016). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT-Food science and technology, 66, 34-40. https://doi.org/10.1016/j.lwt.2015.10.017
- Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology (Campinas), 36(1), 145-150. https://doi.org/10.1590/1678-457X.0068
- Bellos, E., & Tzivanidis, C. (2018). Enhancing the performance of evacuated and non-evacuated parabolic trough collectors using twisted tape inserts, perforated plate inserts and internally finned absorber. Energies, 11(5), 1129. https://doi.org/10.3390/en11051129
- Bellos, E., & Tzivanidis, C. (2020). Polynomial expressions for the thermal efficiency of the parabolic trough solar collector. Applied Sciences, 10(19), 6901. https://doi.org/10.3390/app10196901
- Camci, M. (2020). Thermodynamic analysis of a novel integration of a spray dryer and solar collectors: A case study of a milk powder drying system. Drying Technology, 38(3), 350-360. https://doi.org/10.1080/07373937.2019.1570935
- Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. Journal of Food Engineering, 111(1), 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010
- Chafie, M., Aissa, M. F. B., & Guizani, A. (2018). Energetic end exergetic performance of a parabolic trough collector receiver: An experimental study. Journal of Cleaner Production, 171, 285-296. https://doi.org/10.1016/j.jclepro.2017.10.012
- Elmohlawy, A. E., Kazanjan, B. I., & Ochkov, V. F. (2018, November). Modeling and performance prediction of solar parabolic trough collector for hybrid thermal power generation plant under different weather conditions. In AIP Conference Proceedings(Vol. 2047, No. 1). AIP Publishing. https://doi.org/10.1063/1.5081635
- Gaul, H., & Rabl, A. (1980). Incidence-angle modifier and average optical efficiency of parabolic trough collectors. Journal of solar energy engeenering. 16-21 https://doi.org/10.1115/1.3266115
- Gharehdaghi, S., Moujaes, S. F., & Nejad, A. M. (2021). Thermal-fluid analysis of a parabolic trough solar collector of a direct supercritical carbon dioxide Brayton cycle: A numerical study. Solar Energy, 220, 766-787. https://doi.org/10.1016/j.solener.2021.03.039
- Kajavali, A., Sivaraman, B., & Kulasekharan, N. (2014). Investigation of heat transfer enhancement in a parabolic trough collector with a modified absorber. International Energy Journal, 14(4).
- Kalogirou, S. A. (2023). Solar energy engineering: processes and systems. Elsevier. 51-123. https://doi.org/10.1016/B978-0-12-397270-5.00002-9
- Kumar, P., & Singh, D. (2020). Advanced technologies and performance investigations of solar dryers: A review. Renewable Energy Focus, 35, 148-158. https://doi.org/10.1016/j.ref.2020.10.003
- Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., & Srivastav, P. P. (2021). Refractance Window-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024
- Manikandan, G. K., Iniyan, S., & Goic, (2019). Enhancing the optical and thermal efficiency of a parabolic trough collector–A review. Applied Energy, 235, 1524-1540. https://doi.org/10.1016/j.apenergy.2018.11.048
- Mohammadi, I., Tabatabaekoloor, R., & Motevali, A. (2019). Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices. Energy, 170, 149-158. https://doi.org/10.1016/j.energy.2018.12.099
- Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., & Khoshtaghaza, M. H. (2014). Comparison of energy parameters in various dryers. Energy Conversion and Management, 87, 711-725. https://doi.org/10.1016/j.enconman.2014.07.012
- Nazari, S., Shahhoseini, O., Sohrabi-Kashani, A., Davari, S., Paydar, R., & Delavar-Moghadam, Z. (2010). Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants. Energy, 35(7), 2992-2998. https://doi.org/10.1016/j.energy.2010.03.035
- Nindo, C. I., Feng, H., Shen, G. Q., Tang, J., & Kang, D. H. (2003). Energy utilization and microbial reduction in a new film drying system. Journal of Food Processing and Preservation, 27(2), 117-136. https://doi.org/10.1111/j.1745-4549.2003.tb00506.x
- Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, 241, 75-87. https://doi.org/10.1016/j.jfoodeng.2018.08.008
- Padhi, S., & Dwivedi, M. (2022). Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of Refractance window drying. Future Foods, 5, 100101. https://doi.org/10.1016/j.fufo.2021.100101
- Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance window drying of foods: A review. Journal of Food Engineering, 222, 267-275. https://doi.org/10.1016/j.jfoodeng.2017.11.032
- Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology, 12, 1646-1658. https://doi.org/10.1007/s11947-019-02334-7
- Rajoriya, D., Shewale, S. R., Bhavya, M. L., & Hebbar, H. U. (2020). Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science & Emerging Technologies, 66, 102530. https://doi.org/10.1016/j.ifset.2020.102530
- Samadi, S. H., & Loghmanieh, I. (2013). Evaluation of energy aspects of apple drying in the hot-air and infrared dryers. Energy Research Journal, 4(1), 30-38. https://doi.org/10.3844/erjsp.2013.30.38
- Seyfi, A., Asl, A. R., & Motevali, A. (2021). Comparison of the energy and pollution parameters in solar refractance window (photovoltaic-thermal), conventional refractance window, and hot air dryer. Solar Energy, 229, 162-173. https://doi.org/10.1016/j.solener.2021.05.094
- Shahraki, A., Khojastehpour, M., Golzarian, M. R., & Azarpazhooh, E. (2024). Simulation of Heat and Mass Transfer in a Refractance Window Dryer for Aloe vera gel. Journal of Agricultural Machinery, 14(2), 197-214. https://doi.org/10.22067/jam.2023.80368.1141
- Shirole, A., Wagh, M., & Kulkarni, V. (2021). Thermal Performance Comparison of Parabolic trough collector (PTC) using various Nanofluids. International Journal of Renewable Energy Development, 10(4), 875. https://doi.org/10.14710/ijred.2021.33801
- Sookramoon, K. (2016). Design of a Solar Tunnel Dryer Combined Heat with a Parabolic Trough for Paddy Drying. Applied Mechanics and Materials, 851, 239-243. https://doi.org/10.4028/www.scientific.net/AMM.851.239
- Taghinezhad, E., Kaveh, M., Szumny, A., Figiel, A., & Blasco, J. (2023). Qualitative, energy and environmental aspects of microwave drying of pre-treated apple slices. Scientific Reports, 13(1), 16152. https://doi.org/10.1038/s41598-023-43358-6
- Teymori-Omran, M., Askari Asli-Ardeh, E., Taghinezhad, E., Motevali, A., Szumny, A., & Nowacka, M. (2023). Enhancing Energy Efficiency and retention of bioactive compounds in apple drying: Comparative analysis of combined hot air–infrared drying strategies. Applied Sciences, 13(13), 7612. https://doi.org/10.3390/app13137612
- Teymori-omran, M., Motevali, A., Seyedi, S. R. M., & Montazeri, M. (2021). Numerical simulation and experimental validation of a photovoltaic/thermal system: Performance comparison inside and outside greenhouse. Sustainable Energy Technologies and Assessments, 46, 101271. https://doi.org/10.1016/j.seta.2021.101271
- Tiwari, S., Tiwari, G. N., & Al-Helal, I. M. (2016). Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy, 133, 421-428. https://doi.org/10.1016/j.solener.2016.04.033
- Waghmare, R. (2021). Refractance window drying: A cohort review on quality characteristics. Trends in Food Science & Technology, 110, 652-662. https://doi.org/10.1016/j.tifs.2021.02.030
- Wang, Q., Yao, Y., Shen, Z., & Yang, H. (2023). A hybrid parabolic trough solar collector system integrated with photovoltaics. Applied Energy, 329, 120336. https://doi.org/10.1016/j.apenergy.2022.120336
ارسال نظر در مورد این مقاله