نوع مقاله : مقاله پژوهشی انگلیسی
نویسندگان
1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
2 گروه مهندسی ماشینهای کشاورزی، دانشکده کشاورزی سنقر، دانشگاه رازی، کرمانشاه، ایران
چکیده
در این تحقیق، مقدار ویتامین C، ترکیبات معطر و تغییر رنگ پودر پرتقال با استفاده از روشهای شیمیایی، دستگاه بویایی و اسکنر در چهار خشککن در دمایC ° ۴۵ درجه سانتیگراد اندازهگیری شد. این دستگاههای خشککن شامل خلاء اتمسفر معمولی، خلاء کنترل اتمسفر، همرفتی و همرفتی-مادون قرمز بودند. بیشترین پاسخ حسگرها به ترکیبات معطر در خشککنهای همرفتی و کمترین پاسخ در خشککنهای خلاء کنترل و خلاء معمولی مشاهده شد. دو مؤلفه اصلی تحلیل مؤلفههای اصلی (PCA) ۸۸% از واریانس دادهها را توضیح دادند. ساختار شبکه عصبی مصنوعی (ANN) ۸-۵-۴ بود. علاوه بر این، بر اساس نمودارهای بارگذاری مدلهای حداقل مربعات جزئی (PLS) و رگرسیون مؤلفههای اصلی (PCR)، حسگرهای MQ3 و MQ6 بهترین حسگرها برای پیشبینی میزان ویتامین C و تغییر رنگ پودر پرتقال بودند. حسگرMQ135 نیز به دلیل دقت پایین و کاهش هزینه، میتواند از مجموعه حسگرهای بینی الکترونیکی حذف شود. رگرسیون خطی چندگانه (MLR)، در مقایسه با مدلهای PCR وPLS، دقیقتر عمل کرد، یعنی R2= 0.83 و RMSE= 0.144 برای پیشبینی ویتامین C و R2= 0.94 و RMSE= 0.68 برای پیشبینی تغییر رنگ محاسبه شدند. بیشترین و کمترین مقادیر تغییر رنگ اندازهگیریشده بهترتیب در خشککن همرفتی و خشککن خلاء کنترل اتمسفری مشاهده شد. همچنین، بیشترین و کمترین ویتامین C اندازهگیریشده بهترتیب در خشککن همرفتی-مادون قرمز و خشککن خلاء کنترل اتمسفری مشاهده شد. بهترین خشککن برای حفظ کیفیت پودر پرتقال، خشککن همرفتی-مادون قرمز بود. نتایج این مقاله نشان داد که دادههای بهدستآمده از دستگاه بویایی قادر به پیشبینی تغییر رنگ و ویتامین C پودر پرتقال است. همچنین، میتوان از دستگاه بویایی برای شناسایی و طبقهبندی نوع خشککن مورد استفاده برای تهیه پودر پرتقال با کمترین زمان و هزینه، بدون تخریب نمونه، و تعیین بهترین خشککن برای تهیه پودر پرتقال استفاده کرد.
کلیدواژهها
موضوعات
Authors retain the copyright. This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Adibzadeh, A., Dizaji, H. Z., & Aghilinategh, N. (2020). Feasibility of Detecting Sugarcane Varieties by Electronic Nose Technique in Sugarcane Syrup. Iranian Biosystems Engineering Journal, 51(1), 1-10. (in Persian). https://doi.org/10.22059/IJBSE.2019.287027.665209
- Agarwal, A., Shaharyar, A., Kumar, A., Bhat, M. S., & Mishra, M. (2015). Scurvy in pediatric age group–a disease often forgotten? Journal of Clinical Orthopedics and Trauma, 6(2), 101-107. https://doi.org/10.1016/j.jcot.2014.12.003
- Aghilinategh, N., Dalvand, M. J., & Anvar, A. (2020). Detection of ripeness grades of berries using an electronic nose. Food Science and Nutrition, Wiley 8(9), 4919-4928. https://doi.org/10.1002/fsn3.1788
- Ahmadi Chenarbon, H., Minaei, S., Bassiri, A., Almassi, M., Arabhosseini, A., & Motevali, M. (2012). Effect of drying on the color of St. John’s wort (Hypericum perforatum) leaves. International Journal of Food Engineering, 8(4), 1-12. https://doi.org/10.1515/1556-3758.2545
- Ahmadi, G. M., & Chayjan, R. A. (2017). Optimization of hazelnut kernel drying in an inferared dryer with microwave pretreatment using response surface metodology. Iranian Journal of Food Science and Technology, 14(64), 165-178.
- Amiri Chayjan, R., & Fealekari, M. (2017). Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions. ACTA Scientiarum Polonorum Technologia Alimentaria 16(2), 157-170. https://doi.org/10.17306/J.AFS.2017.0471
- Ashebir, D., Jezik, K., Weingartemann, H., & Gretzmacher, R. (2009). Change in color and other fruit quality characteristics of tomato cultivars after hot-air drying at low final-moisture content. International Journal of Food Sciences and Nutrition, 60(7), 308-315.
- Bal, L. M., Kar, A., Satya, S., & Naik, S. N. (2011). Kinetics of color change of bamboo shoot slices during microwave drying. International Journal of Food Science & Technology, 46(4), 827-833.
- Chen, D., Xing, B., Yi, H., Li, Y., Zheng, B., Wang, Y., & Shao, Q. (2020). Effects of different drying methods on appearance, microstructure, bioactive compounds and aroma compounds of saffron (Crocus sativus). LWT Food Science, 120, 108913. https://doi.org/10.1016/j.lwt.2019.108913
- Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272, 723-731. https://doi.org/10.1016/j.foodchem.2018.08.068
- Drewnowski, A. (2010) The Nutrient Rich Foods Index helps to identify healthy, affordable foods. The American journal of Clinical Nutrition, 914, 1095-1101. https://doi.org/10.3945/ajcn.2010.28450D
- Fathabadi, M., Tabatabaekoloor, R., & Motevali, A. (2019). Modeling and comparison of color changes and shrinkage of thin layer drying of red beetroot in different dryers. Journal of Food Science and Technology, 95(16), 127-142. https://sid.ir/paper/72023/en
- Finley, J. W., & Klurfeld, D. M. (2013). The USDA-Agricultural Research Service (ARS) program in dietary surveillance and food composition. Food Science, 2, 157-164. https://doi.org/10.1016/j.profoo.2013.04.023
- Ghasemi, A., & Chayjan, R. A. (2019). Numerical simulation of vitamin C degradation during dehydration process of fresh tomatoes. Journal of Food Process Engineering, 42(6), 13189. https://doi.org/10.1111/jfpe.13189
- Guclu, G., Keser, D., Kelebek, H., Keskin, M., Sekerli, Y. E., Soysal, Y., & Selli, S. (2020). Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. Food Chemistry, 338, 128129. https://doi.org/10.1016/j.foodchem.2020.128129
- Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7
- Heidarbeigi, K., Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391-1401. https://doi.org/10.1080/10942912.2014.915850
- Karaaslan, S. N., & Erdem, T. (2014). Mathematical Modelling of Orange Slices during Microwave, Convection, Combined Microwave and Convection Drying. Turkish Journal of Agricultural and Natural Sciences, 1(2), 143-149.
- Karaaslan, S. N., & Tunçer I. K. (2008). Development of a drying model for combined microwave- fan-assisted convection drying of spinach. Biosyst Engineering, 100, 44-52.
- Khafajeh, H., Banakar, A., Ghobadian, B., & Motevali, A. (2013). Drying of Orange Slices in CHP Dryer. Advances in Environmental Biology, 7(9), 2326-2331.
- Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2016). portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156. https://doi.org/10.1016/j.chemolab.2016.05.013
- Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata) leaves during the drying process using electronic nose system. Measurement, 124, 447-452. https://doi.org/10.1016/j.measurement.2018.03.033
- Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry 291(1), 49-58. https://doi.org/10.1016/j.foodchem.2019.03.152
- Lemus-Mondaca, R., Ah-Hen, K., Vega-Gálvez, A., Honores, C., & Moraga, N. O. (2017). Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods for Human Nutrition, 71(1), 49-56. https://doi.org/10.1007/s11130-015-0524-3
- Li, J., Li, Z., Li, L., Song, C., Raghavan, G., & He, F. (2020). Microwave drying of balsam pear with online aroma detection and control. Journal of Food Engineering, 288, 110139. https://doi.org/10.1016/j.jfoodeng.2020.110139
- Melucci, D., Bendini, A., Tesini, F., Barbieri, S., Zappi, A., Vichi, S., Conte, L., & Toschi, T. G. (2016). Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chemistry 204(1), 263-273. https://doi.org/10.1016/j.foodchem.2016.02.131
- Nouri, B., Mohtasebi, S. S., & Rafiee, S. (2020). Quality detection of pomegranate fruit infected with fungal disease. International Journal of Food Properties, 23(1), 9-21. https://doi.org/10.1080/10942912.2019.1705851
- Ni, H., Jiang, Q. X., Zhang, T., Huang, G. L., Li, L. J., & Chen, F. (2020). Characterization of the aroma of an instant white tea dried by freeze drying. Molecules, 25(16), 3628. https://doi.org/10.3390/molecules25163628
- Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry 187(15), 174-181. https://doi.org/10.1016/j.foodchem.2015.04.090
- Patel, H. K. (2014). The Electronic Nose: Artificial Olfaction Technology. Springer.
- Peris, M., & Escuder-Gilabert, L. A. (2009). 21st century technique for food control: electronic noses. Anal Chimistry Acta, 638(1), 1-15. https://doi.org/10.1016/j.aca.2009.02.009
- Qin, L., Gao, J. X., Xue, J., Chen, D., Lin, S. Y., Dong, X. P., & Zhu, B. W. (2020). Changes in aroma profile of shiitake mushroom (Lentinus edodes) during different stages of hot air drying. Foods, 9, 444. https://doi.org/10.3390/foods9040444
- Rasekh, M., Karami, H., Wilson, A. D., & Gancarz, M. (2021). Performance analysis of MAU-9 electronic-nose MOS sensor array components and ANN classification methods for discrimination of herb and fruit essential oils. Chemosensors, 9(9), 243. https://doi.org/10.3390/chemosensors9090243
- Sanaeifar, A., Mohtesabi, S., Ghasemi Varnamekhati, M., & Ahmadi, H. (2015). Design, manufacture, and performance evaluation of an olfactory machine based on metal oxide semiconductor (MOS) sensors for monitoring banana ripening. Journal of Agricultural Machinery, 5(1), 111-121. (in Persian). https://doi.org/10.22067/jam.v5i1.27159
- Sanaeifar, A., Mohtasebi, S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105-114. https://doi.org/10.1016/j.measurement.2015.12.041
- Sanaeifar, A., ZakiDizaji, H., & Jafari, A. (2017). Guardia MDL. Early detection of contamination and defect in foodstuffs by electronic nose. A review. TrAC, Trends Anal Chemistry, 97, 257-271. https://doi.org/10.1016/j.trac.2017.09.014
- Sanchez-Reinoso, Z., Osorio, C., & Herrera, A. (2017). Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterization of microencapsulates. Powder Technology, 318, 110-119. https://doi.org/10.1016/j.powtec.2017.05.040
- Shi, X. F., Chu, J. Z., Zhang, Y. F., Liu, C. Q., & Yao, X. Q. (2017). Nutritional and active in gradients of medicinal chrysanthemum flower heads affected by different drying methods. Industrial Crops and Products, 104(1), 45-51. https://doi.org/10.1016/j.indcrop.2017.04.021
- Song, J., Chen, Q., Bi, J., Meng, X., Wu, X., Qiao, Y., & Lyu, Y. (2020). GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods. Food Chemistry, 331(30), 127-201. https://doi.org/10.1016/j.foodchem.2020.127201
- Spínola, V., Llorent-Martínez, E. J., & Castilho, P. C. (2014). Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography, 1369, 2-17. https://doi.org/10.1016/j.chroma.2014.09.087
- Wang, J., Lu, Z., Chen, X., & Zhang, H. (2016). Modeling of Color Changes of Loquat Fruit during Drying. Food Science, 37(21), 104-108.
- Yang, W., Yu, J., Pei, F., Mariga, A. M., Ma, N., Fang, Y., & Hu, Q. (2016). Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME–GC–MS and electronic nose. Food Chemistry, 196(1), 860-866. https://doi.org/10.1016/j.foodchem.2015.09.097
- Zhang, H., Wang, J., Ye, S., & Chang, M. (2012). Application of electronic nose and statistical analysis to predict quality indices of peach. Food Bioprocess Technology, 5, 65-72. https://doi.org/10.1007/s11947-009-0295-7
- Zhang, H., Wang, J., & Ye, S. (2008). Predictions of acidity, soluble solids and firmness of pear using electronic nose technique. Journal of Food Engineering, 86, 370-378. https://doi.org/10.1016/j.jfoodeng.2007.08.026
ارسال نظر در مورد این مقاله