با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی انگلیسی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه مهندسی ماشینهای کشاورزی، دانشکده کشاورزی سنقر، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این تحقیق، مقدار ویتامین C، ترکیبات معطر و تغییر رنگ پودر پرتقال با استفاده از روش‌های شیمیایی، دستگاه بویایی و اسکنر در چهار خشک‌کن در دمایC ° ۴۵ درجه سانتی‌گراد اندازه‌گیری شد. این دستگاه‌های خشک‌کن شامل خلاء اتمسفر معمولی، خلاء کنترل اتمسفر، همرفتی و همرفتی-مادون قرمز بودند. بیشترین پاسخ حسگرها به ترکیبات معطر در خشک‌کن‌های همرفتی و کمترین پاسخ در خشک‌کن‌های خلاء کنترل و خلاء معمولی مشاهده شد. دو مؤلفه اصلی تحلیل مؤلفه‌های اصلی (PCA) ۸۸% از واریانس داده‌ها را توضیح دادند. ساختار شبکه عصبی مصنوعی (ANN) ۸-۵-۴ بود. علاوه بر این، بر اساس نمودارهای بارگذاری مدل‌های حداقل مربعات جزئی (PLS) و رگرسیون مؤلفه‌های اصلی (PCR)، حسگرهای MQ3 و MQ6 بهترین حسگرها برای پیش‌بینی میزان ویتامین C و تغییر رنگ پودر پرتقال بودند. حسگرMQ135  نیز به دلیل دقت پایین و کاهش هزینه، می‌تواند از مجموعه حسگرهای بینی الکترونیکی حذف شود. رگرسیون خطی چندگانه (MLR)، در مقایسه با مدل‌های PCR وPLS، دقیق‌تر عمل کرد، یعنی R2= 0.83 و RMSE= 0.144 برای پیش‌بینی ویتامین C و R2= 0.94 و RMSE= 0.68 برای پیش‌بینی تغییر رنگ محاسبه شدند. بیشترین و کمترین مقادیر تغییر رنگ اندازه‌گیری‌شده به‌ترتیب در خشک‌کن همرفتی و خشک‌کن خلاء کنترل اتمسفری مشاهده شد. همچنین، بیشترین و کمترین ویتامین C اندازه‌گیری‌شده به‌ترتیب در خشک‌کن همرفتی-مادون قرمز و خشک‌کن خلاء کنترل اتمسفری مشاهده شد. بهترین خشک‌کن برای حفظ کیفیت پودر پرتقال، خشک‌کن همرفتی-مادون قرمز بود. نتایج این مقاله نشان داد که داده‌های به‌دست‌آمده از دستگاه بویایی قادر به پیش‌بینی تغییر رنگ و ویتامین C پودر پرتقال است. همچنین، می‌توان از دستگاه بویایی برای شناسایی و طبقه‌بندی نوع خشک‌کن مورد استفاده برای تهیه پودر پرتقال با کمترین زمان و هزینه، بدون تخریب نمونه، و تعیین بهترین خشک‌کن برای تهیه پودر پرتقال استفاده کرد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Adibzadeh, A., Dizaji, H. Z., & Aghilinategh, N. (2020). Feasibility of Detecting Sugarcane Varieties by Electronic Nose Technique in Sugarcane Syrup. Iranian Biosystems Engineering Journal, 51(1), 1-10. (in Persian). https://doi.org/10.22059/IJBSE.2019.287027.665209
  2. Agarwal, A., Shaharyar, A., Kumar, A., Bhat, M. S., & Mishra, M. (2015). Scurvy in pediatric age group–a disease often forgotten? Journal of Clinical Orthopedics and Trauma, 6(2), 101-107. https://doi.org/10.1016/j.jcot.2014.12.003
  3. Aghilinategh, N., Dalvand, M. J., & Anvar, A. (2020). Detection of ripeness grades of berries using an electronic nose. Food Science and Nutrition, Wiley 8(9), 4919-4928. https://doi.org/10.1002/fsn3.1788
  4. Ahmadi Chenarbon, H., Minaei, S., Bassiri, A., Almassi, M., Arabhosseini, A., & Motevali, M. (2012). Effect of drying on the color of St. John’s wort (Hypericum perforatum) leaves. International Journal of Food Engineering, 8(4), 1-12. https://doi.org/10.1515/1556-3758.2545
  5. Ahmadi, G. M., & Chayjan, R. A. (2017). Optimization of hazelnut kernel drying in an inferared dryer with microwave pretreatment using response surface metodology. Iranian Journal of Food Science and Technology, 14(64), 165-178.
  6. Amiri Chayjan, R., & Fealekari, M. (2017). Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions. ACTA Scientiarum Polonorum Technologia Alimentaria 16(2), 157-170. https://doi.org/10.17306/J.AFS.2017.0471
  7. Ashebir, D., Jezik, K., Weingartemann, H., & Gretzmacher, R. (2009). Change in color and other fruit quality characteristics of tomato cultivars after hot-air drying at low final-moisture content. International Journal of Food Sciences and Nutrition, 60(7), 308-315.
  8. Bal, L. M., Kar, A., Satya, S., & Naik, S. N. (2011). Kinetics of color change of bamboo shoot slices during microwave drying. International Journal of Food Science & Technology, 46(4), 827-833.
  9. Chen, D., Xing, B., Yi, H., Li, Y., Zheng, B., Wang, Y., & Shao, Q. (2020). Effects of different drying methods on appearance, microstructure, bioactive compounds and aroma compounds of saffron (Crocus sativus). LWT Food Science, 120, 108913. https://doi.org/10.1016/j.lwt.2019.108913
  10. Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272, 723-731. https://doi.org/10.1016/j.foodchem.2018.08.068
  11. Drewnowski, A. (2010) The Nutrient Rich Foods Index helps to identify healthy, affordable foods. The American journal of Clinical Nutrition, 914, 1095-1101. https://doi.org/10.3945/ajcn.2010.28450D
  12. Fathabadi, M., Tabatabaekoloor, R., & Motevali, A. (2019). Modeling and comparison of color changes and shrinkage of thin layer drying of red beetroot in different dryers. Journal of Food Science and Technology, 95(16), 127-142. https://sid.ir/paper/72023/en
  13. Finley, J. W., & Klurfeld, D. M. (2013). The USDA-Agricultural Research Service (ARS) program in dietary surveillance and food composition. Food Science, 2, 157-164. https://doi.org/10.1016/j.profoo.2013.04.023
  14. Ghasemi, A., & Chayjan, R. A. (2019). Numerical simulation of vitamin C degradation during dehydration process of fresh tomatoes. Journal of Food Process Engineering, 42(6), 13189. https://doi.org/10.1111/jfpe.13189
  15. Guclu, G., Keser, D., Kelebek, H., Keskin, M., Sekerli, Y. E., Soysal, Y., & Selli, S. (2020). Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. Food Chemistry, 338, 128129. https://doi.org/10.1016/j.foodchem.2020.128129
  16. Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7
  17. Heidarbeigi, K., Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391-1401. https://doi.org/10.1080/10942912.2014.915850
  18. Karaaslan, S. N., & Erdem, T. (2014). Mathematical Modelling of Orange Slices during Microwave, Convection, Combined Microwave and Convection Drying. Turkish Journal of Agricultural and Natural Sciences, 1(2), 143-149.
  19. Karaaslan, S. N., & Tunçer I. K. (2008). Development of a drying model for combined microwave- fan-assisted convection drying of spinach. Biosyst Engineering, 100, 44-52.
  20. Khafajeh, H., Banakar, A., Ghobadian, B., & Motevali, A. (2013). Drying of Orange Slices in CHP Dryer. Advances in Environmental Biology, 7(9), 2326-2331.
  21. Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2016). portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156. https://doi.org/10.1016/j.chemolab.2016.05.013
  22. Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata) leaves during the drying process using electronic nose system. Measurement, 124, 447-452. https://doi.org/10.1016/j.measurement.2018.03.033
  23. Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry 291(1), 49-58. https://doi.org/10.1016/j.foodchem.2019.03.152
  24. Lemus-Mondaca, R., Ah-Hen, K., Vega-Gálvez, A., Honores, C., & Moraga, N. O. (2017). Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods for Human Nutrition, 71(1), 49-56. https://doi.org/10.1007/s11130-015-0524-3
  25. Li, J., Li, Z., Li, L., Song, C., Raghavan, G., & He, F. (2020). Microwave drying of balsam pear with online aroma detection and control. Journal of Food Engineering, 288, 110139. https://doi.org/10.1016/j.jfoodeng.2020.110139
  26. Melucci, D., Bendini, A., Tesini, F., Barbieri, S., Zappi, A., Vichi, S., Conte, L., & Toschi, T. G. (2016). Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chemistry 204(1), 263-273. https://doi.org/10.1016/j.foodchem.2016.02.131
  27. Nouri, B., Mohtasebi, S. S., & Rafiee, S. (2020). Quality detection of pomegranate fruit infected with fungal disease. International Journal of Food Properties, 23(1), 9-21. https://doi.org/10.1080/10942912.2019.1705851
  28. Ni, H., Jiang, Q. X., Zhang, T., Huang, G. L., Li, L. J., & Chen, F. (2020). Characterization of the aroma of an instant white tea dried by freeze drying. Molecules, 25(16), 3628. https://doi.org/10.3390/molecules25163628
  29. Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry 187(15), 174-181. https://doi.org/10.1016/j.foodchem.2015.04.090
  30. Patel, H. K. (2014). The Electronic Nose: Artificial Olfaction Technology. Springer.
  31. Peris, M., & Escuder-Gilabert, L. A. (2009). 21st century technique for food control: electronic noses. Anal Chimistry Acta, 638(1), 1-15. https://doi.org/10.1016/j.aca.2009.02.009
  32. Qin, L., Gao, J. X., Xue, J., Chen, D., Lin, S. Y., Dong, X. P., & Zhu, B. W. (2020). Changes in aroma profile of shiitake mushroom (Lentinus edodes) during different stages of hot air drying. Foods, 9, 444. https://doi.org/10.3390/foods9040444
  33. Rasekh, M., Karami, H., Wilson, A. D., & Gancarz, M. (2021). Performance analysis of MAU-9 electronic-nose MOS sensor array components and ANN classification methods for discrimination of herb and fruit essential oils. Chemosensors, 9(9), 243. https://doi.org/10.3390/chemosensors9090243
  34. Sanaeifar, A., Mohtesabi, S., Ghasemi Varnamekhati, M., & Ahmadi, H. (2015). Design, manufacture, and performance evaluation of an olfactory machine based on metal oxide semiconductor (MOS) sensors for monitoring banana ripening. Journal of Agricultural Machinery, 5(1), 111-121. (in Persian). https://doi.org/10.22067/jam.v5i1.27159
  35. Sanaeifar, A., Mohtasebi, S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105-114. https://doi.org/10.1016/j.measurement.2015.12.041
  36. Sanaeifar, A., ZakiDizaji, H., & Jafari, A. (2017). Guardia MDL. Early detection of contamination and defect in foodstuffs by electronic nose. A review. TrAC, Trends Anal Chemistry, 97, 257-271. https://doi.org/10.1016/j.trac.2017.09.014
  37. Sanchez-Reinoso, Z., Osorio, C., & Herrera, A. (2017). Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterization of microencapsulates. Powder Technology, 318, 110-119. https://doi.org/10.1016/j.powtec.2017.05.040
  38. Shi, X. F., Chu, J. Z., Zhang, Y. F., Liu, C. Q., & Yao, X. Q. (2017). Nutritional and active in gradients of medicinal chrysanthemum flower heads affected by different drying methods. Industrial Crops and Products, 104(1), 45-51. https://doi.org/10.1016/j.indcrop.2017.04.021
  39. Song, J., Chen, Q., Bi, J., Meng, X., Wu, X., Qiao, Y., & Lyu, Y. (2020). GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods. Food Chemistry, 331(30), 127-201. https://doi.org/10.1016/j.foodchem.2020.127201
  40. Spínola, V., Llorent-Martínez, E. J., & Castilho, P. C. (2014). Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography, 1369, 2-17. https://doi.org/10.1016/j.chroma.2014.09.087
  41. Wang, J., Lu, Z., Chen, X., & Zhang, H. (2016). Modeling of Color Changes of Loquat Fruit during Drying. Food Science, 37(21), 104-108.
  42. Yang, W., Yu, J., Pei, F., Mariga, A. M., Ma, N., Fang, Y., & Hu, Q. (2016). Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME–GC–MS and electronic nose. Food Chemistry, 196(1), 860-866. https://doi.org/10.1016/j.foodchem.2015.09.097
  43. Zhang, H., Wang, J., Ye, S., & Chang, M. (2012). Application of electronic nose and statistical analysis to predict quality indices of peach. Food Bioprocess Technology, 5, 65-72. https://doi.org/10.1007/s11947-009-0295-7
  44. Zhang, H., Wang, J., & Ye, S. (2008). Predictions of acidity, soluble solids and firmness of pear using electronic nose technique. Journal of Food Engineering, 86, 370-378. https://doi.org/10.1016/j.jfoodeng.2007.08.026
CAPTCHA Image