با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله مروری انگلیسی

نویسندگان

گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

فیلم‌های خوراکی زیست‌تخریب‌پذیر حاوی امولسیون پیکرینگ به‌عنوان جایگزینی پایدار و نویدبخش برای مواد بسته‌بندی غذایی مرسوم مطرح شده‌اند. این فیلم‌ها دارای خواص مکانیکی بهبودیافته‌ای از جمله استحکام کششی، انعطاف‌پذیری و قابلیت ممانعت بخار آب هستند که برای حفظ یکپارچگی مواد غذایی در طول نگهداری و حمل‌ونقل اهمیت دارند. یکی از پیشرفت‌های کلیدی در این حوزه، استفاده از اسانس‌ها در ماتریس امولسیون است که با وجود ماهیت آب‌گریز خود، خواص عملکردی و مکانیکی فیلم‌های بر پایه پلی‌ساکارید را به‌طور قابل‌توجهی ارتقا می‌دهند. این مقاله به بررسی خواص فیزیکومکانیکی فیلم‌های خوراکی زیست‌تخریب‌پذیر بر پایه پلی‌ساکارید که شامل امولسیون‌های پیکرینگ حاوی اسانس هستند می‌پردازد، با تمرکز ویژه بر انعطاف‌پذیری، استحکام کششی، نفوذپذیری بخار آب و ظرفیت نگهداری رطوبت. همچنین نقش این فیلم‌ها در افزایش ماندگاری مواد غذایی مورد بررسی قرار گرفته و نحوه تعامل میان اسانس‌ها و پلی‌ساکاریدها در تأثیرگذاری بر ساختار و ویژگی‌های ممانعتی فیلم‌ها تحلیل می‌شود. یافته‌ها نشان می‌دهند که امولسیون‌های پیکرینگ حاوی اسانس‌ها به‌طور قابل‌توجهی عملکرد مکانیکی و ممانعتی نسبت به رطوبت را در فیلم‌های خوراکی زیست‌تخریب‌پذیر ارتقا می‌دهند. ذرات پایدارکننده جامد موجب افزایش استحکام کششی می‌شوند، در حالی‌که اسانس‌ها، انعطاف‌پذیری را بهبود می‌بخشند. علاوه بر این، امولسیون‌ها جذب آب و حلالیت را کاهش داده و در نتیجه پایداری فیلم در شرایط مرطوب را افزایش می‌دهند. در نهایت، این مرور، به بررسی چالش‌های موجود و شناسایی فرصت‌های پژوهشی کلیدی در توسعه سیستم‌های امولسیون پیکرینگ حاوی اسانس، برای فیلم‌های مذکور پرداخته و همچنین ظرفیت بالقوه آن‌ها برای کاربردهای صنعتی در مقیاس وسیع را تبیین می‌کند.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abdallah, R. B., Ghazouani, T., & Fattouch, S. (2024). Carrageenan Based Films Polysaccharide Based Films for Food Packaging: Fundamentals, Properties and Applications (pp. 175-195): Springer.
  2. Abedi, E., Sayadi, M., & Oliyaei, N. (2024). Fabrication and characterization of emulsion-based edible film containing cinnamon essential oil using chia seed mucilage. International Journal of Biological Macromolecules, 266, 131173. https://doi.org/10.1016/j.ijbiomac.2024.131173
  3. Ahmed, H. M., & Al-Zubaidy, A. M. A. (2020). Exploring natural essential oil components and antibacterial activity of solvent extracts from twelve Perilla frutescens Genotypes. Arabian Journal of Chemistry, 13(10), 7390-7402. https://doi.org/10.1016/j.arabjc.2020.08.017
  4. Akarca, G., & Sevik, R. (2021). Biological Activities of Citrus limon and Citrus sinensis L. Peel essential oils. Journal of Essential Oil Bearing Plants, 24(6), 1415-1427. https://doi.org/10.1080/0972060X.2021.2018330
  5. Akshitha, H., Umesha, K., Leela, N., Shivakumar, M., & Prasath, D. (2020). Quality attributes and essential oil profiling of ginger (Zingiber officinale) genotypes from India. Journal of Essential Oil Research, 32(5), 456-463. https://doi.org/10.1080/10412905.2020.1787852
  6. Alam, W., Hussain, Y., Ahmad, S., Ali, A., & Khan, H. (2023). Neuroprotective effect of essential oils Phytonutrients and Neurological Disorders (pp. 305-333): Elsevier.
  7. Almas, I., Innocent, E., Machumi, F., & Kisinza, W. (2021). Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Scientific African, 12, e00758. https://doi.org/10.1016/j.sciaf.2021.e00758
  8. Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana) essential oil. Food Hydrocolloids, 99, 105338. https://doi.org/10.1016/j.foodhyd.2019.105338
  9. Amanda, P., Ismadi, I., Ningrum, R. S., Nabila, S., & Prasetyo, K. W. (2024). Carrageenan functional film integrated with Pickering emulsion of oregano oil stabilized by cationic nanocellulose for active packaging. Food Science and Technology International, 30(1), 61-72. https://doi.org/10.1177/10820132231180506
  10. Amrani, M., Pourshamohammad, S., Tabibiazar, M., Hamishehkar, H., & Mahmoudzadeh, M. (2023). Antimicrobial activity and stability of satureja khuzestanica essential oil pickering emulsions stabilized by starch nanocrystals and bacterial cellulose nanofibers. Food Bioscience, 55, 103016. https://doi.org/10.1016/j.fbio.2023.103016
  11. Anis, A., Pal, K., & Al-Zahrani, S. M. (2021). Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers, 13(4), 575. https://doi.org/10.3390/polym13040575
  12. Bangar, S. P., Whiteside, W. S., Dunno, K. D., Cavender, G. A., & Dawson, P. (2023). Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. International Journal of Biological Macromolecules, 224, 1576-1587. https://doi.org/10.1016/j.ijbiomac.2022.10.218
  13. Barradas, T. N., & de Holanda e Silva, K. G. (2021). Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environmental Chemistry Letters, 19(2), 1153-1171. https://doi.org/10.1007/s10311-020-01135-1
  14. Beigi, M., Torki-Harchegani, M., & Ghasemi Pirbalouti, A. (2018). Quantity and chemical composition of essential oil of peppermint (Mentha× piperita) leaves under different drying methods. International Journal of Food Properties, 21(1), 267-276. https://doi.org/10.1080/10942912.2018.1440238
  15. Bolouri, P., Salami, R., Kouhi, S., Kordi, M., Asgari Lajayer, B., Hadian, J., & Astatkie, T. (2022). Applications of essential oils and plant extracts in different industries. Molecules, 27(24), 8999. https://doi.org/10.3390/molecules27248999
  16. Borbolla-Jiménez, F. V., Peña-Corona, S. I., Farah, S. J., Jiménez-Valdés, M. T., Pineda-Pérez, E., Romero-Montero, A., ..., & Leyva-Gómez, G. (2023). Films for wound healing fabricated using a solvent casting technique. Pharmaceutics, 15(7), 1914. https://doi.org/10.3390/pharmaceutics15071914
  17. Brun, P., Bernabè, G., Filippini, R., & Piovan, A. (2019). In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Current Microbiology, 76, 108-116. https://doi.org/10.1007/s00284-018-1594-x
  18. Bu, N., Huang, L., Cao, G., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129553. https://doi.org/10.1016/j.colsurfa.2022.129553
  19. Bu, N., Sun, R., Huang, L., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. International Journal of Biological Macromolecules, 220, 1072-1083. https://doi.org/10.1016/j.ijbiomac.2022.08.127
  20. Bukhari, N. T. M., Rawi, N. F. M., Hassan, N. A. A., Saharudin, N. I., & Kassim, M. H. M. (2023). Seaweed polysaccharide nanocomposite films: A review. International Journal of Biological Macromolecules, 245, 125486. https://doi.org/10.1016/j.ijbiomac.2023.125486
  21. Cai, Z., Wei, Y., Shi, A., Zhong, J., Rao, P., Wang, Q., & Zhang, H. (2023). Correlation between interfacial layer properties and physical stability of food emulsions: Current trends, challenges, strategies, and further perspectives. Advances in Colloid and Interface Science, 313, 102863. https://doi.org/10.1016/j.cis.2023.102863
  22. Chen, Q., You, N., Liang, C., Xu, Y., Wang, F., Zhang, B., & Zhang, P. (2023). Effect of cellulose nanocrystals-loaded ginger essential oil emulsions on the physicochemical properties of mung bean starch composite film. Industrial Crops and Products, 191, 116003. https://doi.org/10.1016/j.indcrop.2022.116003
  23. Cheng, Y., Cai, X., Zhang, X., Zhao, Y., Song, R., Xu, Y., & Gao, H. (2024). Applications in Pickering emulsions of enhancing preservation properties: current trends and future prospects in active food packaging coatings and films. Trends in Food Science & Technology, 104643. https://doi.org/10.1016/j.tifs.2024.104643
  24. Chevalier, Y., & Bolzinger, M.-A. (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23-34. https://doi.org/10.1016/j.colsurfa.2013.02.057
  25. Ciancia, M., Matulewicz, M. C., & Tuvikene, R. (2020). Structural diversity in galactans from red seaweeds and its influence on rheological properties. Frontiers in Plant Science, 11, 559986. https://doi.org/10.3389/fpls.2020.559986
  26. Cui, C., Gao, L., Dai, L., Ji, N., Qin, Y., Shi, R., & Sun, Q. (2023). Hydrophobic biopolymer-based films: Strategies, properties, and food applications. Food Engineering Reviews, 15(2), 360-379. https://doi.org/10.1007/s12393-023-09344-4
  27. de Carvalho-Guimarães, F. B., Correa, K. L., de Souza, T. P., Rodriguez Amado, J. R., Ribeiro-Costa, R. M., & Silva-Júnior, J. O. C. (2022). A review of Pickering emulsions: perspectives and applications. Pharmaceuticals, 15(11), 1413. https://doi.org/10.3390/ph15111413
  28. De Farias, P. M., De Sousa, R. V., Maniglia, B. C., Pascall, M., Matthes, J., Sadzik, A., & Fai, A. E. C. (2025). Biobased Food Packaging Systems Functionalized with Essential Oil via Pickering Emulsion: Advantages, Challenges, and Current Applications. ACS omega, 10(5), 4173-4186. https://doi.org/10.1021/acsomega.3c08904
  29. Deng, H., Su, J., Zhang, W., Khan, A., Sani, M. A., Goksen, G., & Rhim, J.-W. (2024). A review of starch/polyvinyl alcohol (PVA) blend film: A potential replacement for traditional plastic-based food packaging film. International Journal of Biological Macromolecules, 132926. https://doi.org/10.1016/j.ijbiomac.2024.132926
  30. Dhama, K., Sharun, K., Gugjoo, M. B., Tiwari, R., Alagawany, M., Iqbal Yatoo, M., & Michalak, I. (2023). A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Reviews International, 39(1), 119-147. https://doi.org/10.1080/87559129.2021.2000313
  31. Díaz-Montes, E., & Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10(2), 249. https://doi.org/10.3390/foods10020249
  32. Du, Y., Zhang, S., Sheng, L., Ma, H., Xu, F., Waterhouse, G. I., & Wu, P. (2023). Food packaging films based on ionically crosslinked konjac glucomannan incorporating zein-pectin nanoparticle-stabilized corn germ oil-oregano oil Pickering emulsion. Food Chemistry, 429, 136874. https://doi.org/10.1016/j.foodchem.2023.136874
  33. Dutta, D., & Sit, N. (2024). A comprehensive review on types and properties of biopolymers as sustainable bio‐based alternatives for packaging. Food Biomacromolecules, 1(2), 58-87.
  34. Eshagh, S., Abbaspour-Fard, M. H., Tabasizadeh, M., & Hosseini, F. (2019). Effect of Zinc Oxide Nanoparticles on Mechanical, Thermal and Biodegradability of Gelatin-Based Biocomposite Properties Films. Iranian Journal of Polymer Science and Technology, 32(5), 411-426. https://doi.org/10.22063/jipst.2020.1693
  35. Eslami, Z., Elkoun, S., Robert, M., & Adjallé, K. (2023). A review of the effect of plasticizers on the physical and mechanical properties of alginate-based films. Molecules, 28(18), 6637. https://doi.org/10.3390/molecules28186637
  36. Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A review on antimicrobial packaging for extending the shelf life of food. Processes, 11(2), 590. https://doi.org/10.3390/pr11020590
  37. Fan, S., Wang, D., Wen, X., Li, X., Fang, F., Richel, A., & Zhang, D. (2023). Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocolloids, 138, 108438. https://doi.org/10.1016/j.foodhyd.2023.108438
  38. Farajpour, R., Djomeh, Z. E., Moeini, S., Tavakolipour, H., & Safayan, S. (2020). Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. International Journal of Biological Macromolecules, 149, 941-950. https://doi.org/10.1016/j.ijbiomac.2020.01.175
  39. Fasihi, H., Noshirvani, N., & Hashemi, M. (2023). Novel bioactive films integrated with Pickering emulsion of ginger essential oil for food packaging application. Food Bioscience, 51, 102269. https://doi.org/10.1016/j.fbio.2022.102269
  40. Giacometti, J., Kovačević, D. B., Putnik, P., Gabrić, D., Bilušić, T., Krešić, G., & Barbosa-Cánovas, G. (2018). Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International, 113, 245-262. https://doi.org/10.1016/j.foodres.2018.06.036
  41. Gotmare, S., & Tambe, E. (2019). Identification of chemical constituents of cinnamon bark oil by GCMS and comparative study garnered from five different countries. Global Journal of Science Frontier Research: C Biological Science, 19(1), 34-42.
  42. Guo, X., Wang, X., Wei, Y., Liu, P., Deng, X., Lei, Y., & Zhang, J. (2024). Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chemistry, 435, 137597. https://doi.org/10.1016/j.foodchem.2023.137597
  43. Gupta, D., Lall, A., Kumar, S., Patil, T. D., & Gaikwad, K. K. (2024). Plant based edible films and coatings for food packaging applications: Recent advances, applications, and trends. Sustainable Food Technology. https://doi.org/10.1039/D3FB00218G
  44. Hammam, A. R. (2019). Technological, applications, and characteristics of edible films and coatings: A review. SN Applied Sciences, 1, 1-11. https://doi.org/10.1007/s42452-019-0931-4
  45. Heydarian, A., Ahmadi, E., Dashti., & Normohammadi, A. (2022). Evaluation of Mechanical and Chemical Parameters of Okra with Chitosan Coating in Nano Packaging Films and Atmospheric Modified Conditions. Journal of Agricultural Machinery, 12(4), 600-612. https://doi.org/10.22067/jam.2021.69257.1027
  46. Hua, L., Deng, J., Wang, Z., Wang, Y., Chen, B., Ma, Y., & Xu, B. (2021). Improving the functionality of chitosan-based packaging films by crosslinking with nanoencapsulated clove essential oil. International Journal of Biological Macromolecules, 192, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.10.047
  47. Hussain, S., Akhter, R., & Maktedar, S. S. (2024). Advancements in sustainable food packaging: from eco-friendly materials to innovative technologies. Sustainable Food Technology, 2(5), 1297-1364. https://doi.org/10.1039/D4FB00086K
  48. Iñiguez-Moreno, M., Calderón-Santoyo, M., Ascanio, G., Ragazzo-Calderón, F. Z., Parra-Saldívar, R., & Ragazzo-Sánchez, J. A. (2024). Harnessing emerging technologies to obtain biopolymer from agro-waste: application into the food industry. Biomass Conversion and Biorefinery, 14(23), 29265-29282. https://doi.org/10.1007/s13399-024-05622-1
  49. Jafarzadeh, S., & Jafari, S. M. (2021). Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Critical Reviews in Food Science and Nutrition, 61(16), 2640-2658. https://doi.org/10.1080/10408398.2020.1783200
  50. Javadi Farsani, M., Mirzaee Moghaddam, H., & Rajaei Najafabadi, A. (2023). Study of some qualitative and organoleptic properties of enriched apple leather. Journal of Food Science and Technology (Iran), 19(133), 175-186. https://doi.org/10.22034/FSCT.19.133.175
  51. Jayakody, M. M., Vanniarachchy, M. P. G., & Wijesekara, I. (2022). Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: A review. Journal of Food Measurement and Characterization, 16(2), 1195-1227. https://doi.org/10.1007/s11694-021-01251-8
  52. Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent advances in starch-based blends and composites for bioplastics applications. Polymers, 14(21), 4557. https://doi.org/10.3390/polym14214557
  53. Jiang, H., Sheng, Y., & Ngai, T. (2020). Pickering emulsions: Versatility of colloidal particles and recent applications. Current Opinion in Colloid & Interface Science, 49, 1-15. https://doi.org/10.1016/j.cocis.2020.04.010
  54. Kanyal, B., Pande, C., Tewari, G., Aabha, Rana, L., Padalia, R. C., ..., & Singh, S. (2023). Influence of Post-Harvest Drying Processes on the Composition and Biological Activities of Essential Oils from Leaves of Camphor Tree from Uttarakhand Himalaya, India. Journal of Essential Oil Bearing Plants, 26(1), 161-175. https://doi.org/10.1080/0972060X.2023.2187345
  55. Katar, N., Katar, D., Temel, R., Karakurt, S., Bolatkiran, İ., Yildiz, E., & Soltanbeigi, A. (2019). The effect of different harvest dates on the yield and quality properties of rosemary (Rosmarinus officinalis ) plant. Biyolojik Çeşitlilik ve Koruma, 12(3), 7-13.
  56. Kokkuvayil Ramadas, B., Rhim, J.-W., & Roy, S. (2024). Recent progress of carrageenan-based composite films in active and intelligent food packaging applications. Polymers, 16(7), 1001. https://doi.org/10.3390/polym16071001
  57. Kosakowska, O., Węglarz, Z., Pióro-Jabrucka, E., Przybył, J. L., Kraśniewska, K., Gniewosz, M., & Bączek, K. (2021). Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules, 26(4), 988. https://doi.org/10.3390/molecules26040988
  58. Kour, P., Shaheen, A., Tak, U. N., Gani, A., Qadri, H. K., & Dar, A. A. (2024). Pickering emulsions of zein nanoparticles co-stabilized by Tween 20: An effective strategy to stabilize citral in low pH environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 701, 134876. https://doi.org/10.1016/j.colsurfa.2024.134876
  59. Kumoro, A., Wardhani, D., Retnowati, D., & Haryani, K. (2021). A brief review on the characteristics, extraction and potential industrial applications of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) essential oils. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  60. Lashari, N., Ganat, T., Elraies, K. A., Ayoub, M. A., Kalam, S., Chandio, T. A., & Sharma, T. (2022). Impact of nanoparticles stability on rheology, interfacial tension, and wettability in chemical enhanced oil recovery: A critical parametric review. Journal of Petroleum Science and Engineering, 212, 110199. https://doi.org/10.1016/j.petrol.2022.110199
  61. Li, S., Chen, W., Zongo, A. W.-S., Chen, Y., Liang, H., Li, J., & Li, B. (2023). Effects of non-starch polysaccharide on starch gelatinization and digestibility: A review. Food Innovation and Advances, 2(4), 302-312. https://doi.org/10.48130/FIA-2023-0023
  62. Liu, J., Song, F., Chen, R., Deng, G., Chao, Y., Yang, Z., & Hu, Y. (2022). Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydrate Polymers, 275, 118704. https://doi.org/10.1016/j.carbpol.2021.118704
  63. Liu, L., Swift, S., Tollemache, C., Perera, J., & Kilmartin, P. A. (2022). Antimicrobial and antioxidant AIE chitosan-based films incorporating a Pickering emulsion of lemon myrtle (Backhousia citriodora) essential oil. Food Hydrocolloids, 133, 107971. https://doi.org/10.1016/j.foodhyd.2022.107971
  64. Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546. https://doi.org/10.1016/j.tifs.2021.04.016
  65. Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117
  66. Malm, M., Liceaga, A. M., San Martin-Gonzalez, F., Jones, O. G., Garcia-Bravo, J. M., & Kaplan, I. (2021). Development of chitosan films from edible crickets and their performance as a bio-based food packaging material. Polysaccharides, 2(4), 744-758. https://doi.org/10.3390/polysaccharides2040045
  67. Mirzaee Moghaddam, H., Tavakkoli, T., Minaee, S., & Rajaee, A. (2007). Some physical properties kiwifruit (cv. Hayward). Paper presented at the Proceedings of the 3th National Congress on Agricultural Machinery, Shiraz, Iran.
  68. Mirzaee Moghaddam, H., Khoshtaghaza, M. H., Salimi, A., & Barzegar, M. (2014). The TiO2–Clay-LDPE nanocomposite packaging films: investigation on the structure and physicomechanical properties. Polymer-Plastics Technology and Engineering, 53(17), 1759-1767. https://doi.org/10.1080/03602559.2014.919652
  69. Mirzaee Moghaddam, H., & Rajaei, A. (2021). Effect of pomegranate seed oil encapsulated in Chitosan-capric acid nanogels incorporating thyme essential oil on physicomechanical and structural properties of Jelly Candy. Journal of Agricultural Machinery, 11(1), 55-70.‏ https://doi.org/10.22067/jam.v11i1.83330
  70. Mirzaee Moghaddam, H., (2019). Investigation of PhysicoMechanical Properties of Functional Gummy Candy Fortified with Encapsulated Fish Oil in Chitosan-Stearic Acid Nanogel by Pickering Emulsion Method. Journal of Food Science and Technology (Iran), 16(90), 53-64. http://fsct.modares.ac.ir/article-7-34530-fa.html
  71. Moeini, A., Pedram, P., Fattahi, E., Cerruti, P., & Santagata, G. (2022). Edible polymers and secondary bioactive compounds for food packaging applications: Antimicrobial, mechanical, and gas barrier properties. Polymers, 14(12), 2395. https://doi.org/10.3390/polym14122395
  72. Molnar, M., Gašo-Sokač, D., Komar, M., Kovač, M. J., & Bušić, V. (2024). Potential of Deep Eutectic Solvents in the Extraction of Organic Compounds From Food Industry By-Products and Agro-Industrial Waste. Separations, 11(1), 35. https://doi.org/10.3390/separations11010035
  73. Mostafavi, F. S., & Zaeim, D. (2020). Agar-based edible films for food packaging applications-A review. International Journal of Biological Macromolecules, 159, 1165-1176. https://doi.org/10.1016/j.ijbiomac.2020.05.153
  74. Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (2025a). Investigation of some structural and physicomechanical properties of bilayer and composite edible films based on sodium carboxymethyl cellulose. Journal of Agricultural Machinery. https://doi.org/10.22067/jam.2025.90690.1312
  75. Nahalkar, A. Rajaei, A., & Mirzaee Moghaddam, H. (2025b). Investigation of the possibility of producing a stabilized walnut oil emulsion with chia seed mucilage and its application in edible films. Journal of Food Science and Technology (FSCT). 22(161): 260-274. https://doi.org/10.22034/FSCT.22.161.260
  76. Nasaj, M., Chehelgerdi, M., Asghari, B., Ahmadieh-Yazdi, A., Asgari, M., Kabiri-Samani, S., & Arabestani, M. (2024). Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: A review. International Journal of Biological Macromolecules, 134321. https://doi.org/10.1016/j.ijbiomac.2024.134321
  77. Nazari, N., Rajaei, A., & Mirzaee Moghaddam, H. (2025). Comparative Effects of Basil Seed and Cress Seed Gums on Stability of Flaxseed Oil Pickering Emulsion and Functional Kiwifruit Bar Characteristics. Food Biophysics, 20(2), 1-15. https://doi.org/10.1007/s11483-025-09947-w
  78. Ngo, T., Tran, T., Nguyen, V., & Mai, H. (2020). Optimization of green mandarin (Citrus reticulata) essential oil extraction using microwave-assisted hydrodistillation and chemical composition analysis. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  79. Ni, Y., Liu, Y., Zhang, W., Shi, S., Zhu, W., Wang, R., & Pang, J. (2021). Advanced konjac glucomannan-based films in food packaging: Classification, preparation, formation mechanism and function. LWT, 152, 112338. https://doi.org/10.1016/j.lwt.2021.112338
  80. Nilsen-Nygaard, J., Fernández, E. N., Radusin, T., Rotabakk, B. T., Sarfraz, J., Sharmin, N., & Pettersen, M. K. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1333-1380. https://doi.org/10.1111/1541-4337.12715
  81. Niro, C. M., Medeiros, J. A., Freitas, J. A., & Azeredo, H. M. (2021). Advantages and challenges of Pickering emulsions applied to bio‐based films: a mini‐ Journal of the Science of Food and Agriculture, 101(9), 3535-3540. https://doi.org/10.1002/jsfa.11020
  82. Ogwu, M. C., & Ogunsola, O. A. (2024). Physicochemical Methods of Food Preservation to Ensure Food Safety and Quality Food Safety and Quality in the Global South (pp. 263-298): Springer.
  83. Olawade, D. B., Wada, O. Z., & Ige, A. O. (2024). Advances and recent trends in plant-based materials and edible films: a mini-review. Frontiers in Chemistry, 12, 1441650. https://doi.org/10.3389/fchem.2024.1441650
  84. Pandita, G., de Souza, C. K., Gonçalves, M. J., Jasińska, J. M., Jamróz, E., & Roy, S. (2024). Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. International Journal of Biological Macromolecules, 132067. https://doi.org/10.1016/j.ijbiomac.2024.132067
  85. Pei, J., Palanisamy, C. P., Srinivasan, G. P., Panagal, M., Kumar, S. S. D., & Mironescu, M. (2024). A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. International Journal of Biological Macromolecules, 133332. https://doi.org/10.1016/j.ijbiomac.2024.133332
  86. Ponnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W., Lauridsen, C., & Dunshea, F. R. (2022). The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—Invited review. Animals, 12(23), 3279. https://doi.org/10.3390/ani12233279
  87. Prerna, & Vasudeva, N. (2016). Comparative Study of Volatile Oil of Stem and Aerial Parts of Origanum majorana Linn. Journal of Essential Oil Bearing Plants, 19(8), 2091-2099. https://doi.org/10.1080/0972060X.2016.1224689
  88. Priyadarshi, R., & Rhim, J.-W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies, 62, 102346. https://doi.org/10.1016/j.ifset.2020.102346
  89. Rajesh, P., & Subhashini, V. (2021). Sustainable packaging from waste material: A review on innovative solutions for cleaner environment. Bioremediation and Green Technologies: Sustainable Approaches to Mitigate Environmental Impacts, 259-270.
  90. Roy, S., Priyadarshi, R., & Rhim, J.-W. (2022). Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil Pickering emulsion for enhancing the shelf life of pork meat. Food Research International, 160, 111690. https://doi.org/10.1016/j.foodres.2022.111690
  91. Roy, S., & Rhim, J.-W. (2021). Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules, 193, 2038-2046. https://doi.org/10.1016/j.ijbiomac.2021.11.035
  92. Rusanov, K., Vassileva, P., Rusanova, M., & Atanassov, I. (2023). Identification of QTL controlling the ratio of linalool to linalyl acetate in the flowers of Lavandula angustifolia Mill var. Hemus. Biotechnology & Biotechnological Equipment, 37(1), 2288929. https://doi.org/10.1080/13102818.2023.2288929
  93. Sahraeian, S., Rashidinejad, A., & Niakousari, M. (2023). Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. International Journal of Biological Macromolecules, 249, 126098. https://doi.org/10.1016/j.ijbiomac.2023.126098
  94. Sayadi, M., Abedi, E., & Oliyaei, N. (2025). Effect of Persian gum-gelatin based-pickering emulsion film loaded with Thyme essential oil on the storage quality of Barred mackerel (Scomberomorus commerrson) fillet. LWT, 215, 117241. https://doi.org/10.1016/j.lwt.2025.117241
  95. Seoane-Viaño, I., Januskaite, P., Alvarez-Lorenzo, C., Basit, A. W., & Goyanes, A. (2021). Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. Journal of Controlled Release, 332, 367-389. https://doi.org/10.1016/j.jconrel.2021.02.027
  96. Shahbazi, N., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Bodaghi, H. (2021). Impact of Chitosan-Capric Acid Nanogels Incorporating Thyme Essential Oil on Stability of Pomegranate Seed Oil-in-Water Pickering Emulsion. Iranian Journal of Chemistry and Chemical Engineering, 40(6), 1737-1748. https://doi.org/10.30492/ijcce.2020.43345
  97. Sharkawy, A., Barreiro, M. F., & Rodrigues, A. E. (2020). Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers, 250, 116885. https://doi.org/10.1016/j.carbpol.2020.116885
  98. Southwell, I. (2021). Backhousia citriodora F. Muell. (Lemon Myrtle), an unrivalled source of citral. Foods, 10(7), 1596. https://doi.org/10.3390/foods10071596
  99. Tabatabaei, M., Ebrahimi, B., Rajaei, A., Movahednejad, M. H., Rastegari, H., Taghavi, E., & Lam, S. S. (2022). Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer. Carbohydrate Polymers, 294, 119791. https://doi.org/10.1016/j.carbpol.2022.119791
  100. Tajari, N., Sadrnia, H., & Hosseini, F.(2024) Investigating the Effect of Storage Time on the Mechanical Properties of Biodegradable Polylactic Acid Film Containing Zinc Oxide Nanoparticles. Journal of Agricultural Machinery, 14(3), 283-299. https://doi.org/10.22067/jam.2023.81863.1160
  101. Tan, C., & McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, 10(4), 812. https://doi.org/10.3390/foods10040812
  102. Tavakoli-Rouzbehani, O. M., Faghfouri, A. H., Anbari, M., Papi, S., Shojaei, F. S., Ghaffari, M., & Alizadeh, M. (2021). The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials. Journal of Ethnopharmacology, 281, 114510. https://doi.org/10.1016/j.jep.2021.114510
  103. Upadhye, S., Mujawar, S. S., & Kashte, S. B. (2025). Eco-friendly, antibacterial, antioxidant, ultraviolet blocking sodium alginate-gelatin films loaded with clove essential oil for food packaging. Journal of Food Measurement and Characterization, 19(4), 2803-2817. https://doi.org/10.1007/s11694-025-02620-3
  104. Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and bio-based food packaging: A review on past and current design innovations. Foods, 12(5), 1057. https://doi.org/10.3390/foods12051057
  105. Wang, J.-D., Yang, S.-L., Liu, G.-S., Zhou, Q., Fu, L.-N., Gu, Q., & Fu, Y.-J. (2024). A degradable multi-functional packaging based on chitosan/silk fibroin via incorporating cellulose nanocrystals-stabilized cinnamon essential oil pickering emulsion. Food Hydrocolloids, 153, 109978. https://doi.org/10.1016/j.foodhyd.2024.109978
  106. Wang, X., Li, S., Zeng, M., Gong, H., Zhang, Z., Yuan, X., & Wu, H. Preparation, Characterization and Application of Antimicrobial Pectin-Konjac Glucomannan Composite Films Incorporating Cellulose Nanocrystals Stabilized Clove Essential Oil Pickering Emulsion. Available at SSRN 5102163.
  107. Wardana, A. A., Wigati, L. P., Van, T. T., Tanaka, F., & Tanaka, F. (2023). Antifungal features and properties of Pickering emulsion coating from alginate/lemongrass oil/cellulose nanofibers. International Journal of Food Science & Technology, 58(2), 966-978. .https://doi.org/10.1111/ijfs.16259
  108. Wesolowska, A., & Jadczak, D. (2019). Comparison of the chemical composition of essential oils isolated from two thyme (Thymus vulgaris) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 829-835. https://doi.org/10.15835/nbha47311490
  109. Wu, H., Wang, J., Li, T., Lei, Y., Peng, L., Chang, J., & Zhang, Z. (2023). Effects of cinnamon essential oil-loaded Pickering emulsion on the structure, properties and application of chayote tuber starch-based composite films. International Journal of Biological Macromolecules, 240, 124444. https://doi.org/10.1016/j.ijbiomac.2023.124444
  110. Xu, J., He, M., Wei, C., Duan, M., Yu, S., Li, D., & Wu, C. (2023). Konjac glucomannan films with Pickering emulsion stabilized by TEMPO-oxidized chitin nanocrystal for active food packaging. Food Hydrocolloids, 139, 108539. https://doi.org/10.1016/j.foodhyd.2023.108539
  111. Yadav, S., Gupta, S. K., Bharti, D., & Yogi, B. (2020). Syzygium aromaticum (clove): a review on various phytochemicals and pharmacological activities in medicinal plant. World Journal of Pharmacy and Research, 9(11), 349-363.
  112. Yang, Y., Aghbashlo, M., Gupta, V. K., Amiri, H., Pan, J., Tabatabaei, M., & Rajaei, A. (2023). Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. international journal of biological macromolecules, 236, 123954. https://doi.org/10.1016/j.ijbiomac.2023.123954
  113. Yao, L., Man, T., Xiong, X., Wang, Y., Duan, X., & Xiong, X. (2023). HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. International Journal of Biological Macromolecules, 238, 124053. https://doi.org/10.1016/j.ijbiomac.2023.124053
  114. Yildirim-Yalcin, M., Tornuk, F., & Toker, O. S. (2022). Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends in Food Science & Technology, 129, 179-193. https://doi.org/10.1016/j.tifs.2022.09.015
  115. Yin, Y., & Woo, M. W. (2024). Transitioning of petroleum-based plastic food packaging to sustainable bio-based alternatives. Sustainable Food Technology, 2(3), 548-566. https://doi.org/10.1039/D4FB00006A
  116. Yu, J. (2025). Chemical Composition of Essential Oils and Their Potential Applications in Postharvest Storage of Cereal Grains. Molecules, 30(3), 683. https://doi.org/10.3390/molecules30030683
  117. Yue, S., Zhang, T., Wang, S., Han, D., Huang, S., Xiao, M., & Meng, Y. (2024). Recent progress of biodegradable polymer package materials: nanotechnology improving both oxygen and water vapor barrier performance. Nanomaterials, 14(4), 338. https://doi.org/10.3390/nano14040338
  118. Zhang, Q., Kong, B., Liu, H., Du, X., Sun, F., & Xia, X. (2024). Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13279. https://doi.org/10.1111/1541-4337.13279
  119. Zhang, S., He, Z., Xu, F., Cheng, Y., Waterhouse, G. I., Sun-Waterhouse, D., & Wu, P. (2022). Enhancing the performance of konjac glucomannan films through incorporating zein–pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocolloids, 124, 107222. https://doi.org/10.1016/j.foodhyd.2021.107222
  120. Zhang, W., Jiang, H., Rhim, J.-W., Cao, J., & Jiang, W. (2022). Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chemistry, 367, 130671. https://doi.org/10.1016/j.foodchem.2021.130671
  121. Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT, 153, 112506. https://doi.org/10.1016/j.lwt.2021.112506
  122. Zhao, Z., Liu, H., Tang, J., He, B., Yu, H., Xu, X., & Su, Y. (2023). Pork preservation by antimicrobial films based on potato starch (PS) and polyvinyl alcohol (PVA) and incorporated with clove essential oil (CLO) Pickering emulsion. Food Control, 154, 109988. https://doi.org/10.1016/j.foodcont.2023.109988
  123. Zoghi, A., Khosravi-Darani, K., & Mohammadi, R. (2020). Application of edible films containing probiotics in food products. Journal of Consumer Protection and Food Safety, 15(4), 307-320. https://doi.org/10.1007/s00003-020-01286-x
  124. Zomorodian, N., Javanshir, S., Shariatifar, N., & Rostamnia, S. (2023). The effect of essential oil of Zataria multiflora incorporated chitosan (free form and Pickering emulsion) on microbial, chemical and sensory characteristics in salmon (Salmo trutta). Food chemistry: X, 20, 100999. https://doi.org/10.1016/j.fochx.2023.100999
CAPTCHA Image