با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

2 دکتری محیط‌زیست گرایش آلودگی‌های محیطی، ایلام، ایران

3 گروه شیمی، دانشکده علوم پایه، دانشگاه ایلام، ایلام، ایران

چکیده

در حوزه کشاورزی، علاوه بر کودهای آلی، انواع مختلفی از کودهای شیمیایی به‌ منظور افزایش حاصلخیزی خاک و ارتقای عملکرد گیاهان مورد استفاده قرار می‌گیرند. پتاسیم به‌عنوان یکی از عناصر ضروری برای رشد گیاه، نقش کلیدی در فرآیندهایی نظیر فتوسنتز، سنتز کلروفیل و افزایش مقاومت گیاه در برابر تنش‌های محیطی ایفا می‌کند. یکی از شاخص‌های مهم در بررسی کیفیت کودهای پتاس، میزان اسیدیته آن‌هاست که تأثیر مستقیمی بر قابلیت جذب عناصر غذایی و اثربخشی کود دارد. در این پژوهش، با هدف توسعه روشی غیرمخرب و دقیق برای ارزیابی خصوصیات شیمیایی کود پتاسیم، از تصویربرداری فراطیفی در بازه طول موجی 400 تا 950 نانومتر استفاده شد. تصاویر چهار نمونه کود پتاسیم با سطوح متفاوت pH ثبت گردید و پس از پردازش اولیه، طول موج‌های مؤثر شامل 453.32، 669.95، 798.11، 821.26، 901.47 و 932.06 نانومتر انتخاب شدند. از کانال‌های تصویری متناظر با این طول موج‌ها، مجموعه‌ای از ویژگی‌های طیفی و آماری استخراج شد. به‌منظور طبقه‌بندی سطوح مختلف pH، با استفاده از یادگیری ماشینی، از شبکه عصبی مصنوعی بهره گرفته شد. نتایج نشان داد مدل بهینه در حالت استفاده از تمامی ویژگی‌ها دارای ساختار 42-6-4 و در حالت استفاده از ویژگی‌های منتخب، دارای ساختار 7-4-4 است. دقت طبقه‌بندی این دو مدل به‌ترتیب برابر با 98.6 و 97.2 درصد به‌دست آمد. یافته‌های این مطالعه بیانگر آن است که ترکیب تصویربرداری فراطیفی و الگوریتم‌های یادگیری ماشینی، روشی کارآمد، سریع، غیرمخرب و مقرون ‌به‌‌صرفه برای پایش کیفیت شیمیایی کودهای پتاس ارائه می‌دهد و می‌تواند جایگزین مناسبی برای روش‌های آزمایشگاهی مرسوم باشد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., & Ahmad, T. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review, Journal of Plant Nutrition 41, 1734-1743. https://doi.org/10.1080/01904167.2018.1459688
  2. Ahmed, W., Khaliduzzaman, A., Emmert, J. L., & Kamruzzaman, M. (2025). An overview of recent advancements in hyperspectral imaging in the egg and hatchery industry. Computers and Electronics in Agriculture, 230, 109847. https://doi.org/10.1016/j.compag.2024.109847
  3. Allahvirdizadeh, N., & Deljou, M. N. (2014). Effect of humic acid on morph-physiological traits, nutrients uptake and postharvest vase life of pot marigold cut flower (Calendula officinalis Crysantha) in hydroponic system. Journal of Science Technology of Greenhouse Culture, 5(18), 133-143. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.20089082.1393.5.2.12.6
  4. Al-Taai, S. H. H. (2021). The effect of fertilizer uses on environmental pollution: A review. Review of International Geographical Education Online, 11(5), 3620-3529.
  5. Arif Chaudhry, M. M., Bane, M., McAllister, T., Paliwal, J., & Narváez-Bravo, C. (2025). Identification and Classification of Multi-Species Biofilms on Polymeric Surfaces Using Hyperspectral Imaging. Journal of Food Safety, 45, e70008. https://doi.org/10.1111/jfs.70008
  6. Aviara, N. A., Liberty, J. T., Olatunbosun, O. S., Shoyombo, H. A., & Oyeniyi, S. K. (2022). Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. Journal of Agriculture and Food Research, 8, 100288. https://doi.org/10.1016/j.jafr.2022.100288
  7. Bagherpour, H., Fatehi, F., Shojaeian, A., & Bagherpour, R. (2025). Hyperparameter Optimization of ANN, SVM, and KNN Models for Classification of Hazelnuts Images Based on Shell Cracks and Feature Selection Method. Journal of Agricultural Machinery, 15(1), 129-144. https://doi.org/10.22067/jam.2024.87830.1244
  8. Chen, J. H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Paper presented at the international workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use.
  9. Ding, J., Zhang, R., Ahmed, S., Liu, Y., & Qin, W. (2019). Effect of sonication duration in the performance of polyvinyl alcohol/chitosan bilayer films and their effect on strawberry preservation. Molecules, 24(7), 1408. https://doi.org/10.3390/molecules24071408
  10. Fernandez, L. C., Allende-Prieto, J., & Peon, E. (2019). Preliminary Assessment of Visible, Near-Infrared, and Short-Wavelength–Infrared Spectroscopy with a Portable Instrument for the Detection of Staphylococcus aureus Biofilms on Surfaces. Journal of Food Protection, 82(8), 1314-1319. https://doi.org/10.4315/0362-028X.JFP-18-567
  11. Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 18, 590-598. https://doi.org/10.1016/j.tifs.2007.06.001
  12. Griffe, P., Metha, S., & Shankar, D. (2003). Organic production of medicinal, aromatic and dye yielding plants (MADPs): forward, preface and introduction. Food Agriculture Organization, 2, 52-63.
  13. Hasan, M. M., Chaudhry, M. M. A., Erkinbaev, C., Paliwal, J., Suman, S. P., & Rodas- Gonzalez, A. (2022). Application of Vis-NIR and SWIR Spectroscopy for the Segregation of Bison Muscles Based on Their Color Stability. Meat Science, 188, 108774. https://doi.org/10.1016/j.meatsci.2022.108774
  14. Hosainpour, A., Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Quality assessment of dried white mulberry (Morus alba) using machine vision. Horticulturae, 8(11), 1011. https://doi.org/10.3390/horticulturae8111011
  15. Ismail, A., Yim, D.-G., Kim, G., & Jo, C. (2023). Hyperspectral imaging coupled with multivariate analyses for efficient prediction of chemical, biological and physical properties of seafood products. Food Engineering Reviews, 15, 41-55. https://doi.org/10.1007/s12393-022-09327-x
  16. Khan, M. H., Saleem, Z., Ahmad, M., Sohaib, A., Ayaz, H., & Mazzara, M. (2020). Hyperspectral imaging for color adulteration detection in red chili. Applied Sciences, 10, 5955. https://doi.org/10.3390/app10175955
  17. Khazaee, Y., Kheiralipour, K., Hosainpour, A., Javadikia, H., & Paliwal, J. (2022). Development of a novel image analysis and classification algorithms to separate tubers from clods and stones. Potato Research, 65, 1-22. https://doi.org/10.1007/s11540-021-09528-7
  18. Kheiralipour, K. (2024). The future of imaging technology. Nova Science Publishers, Hauppauge, New York, USA. ISBN 979-8-89530-078-7.
  19. Kheiralipour, K. (2022). Sustainable production: Definitions, aspects, and elements. (1st), Nova Science Publishers, Hauppauge, New York, USA. ISBN 979-8-88697-208-5.
  20. Kheiralipour, K. (2012). Implementation and construction of a system for detecting fungal infection in pistachio kernel based on thermal imaging (TI) and image processing technology. Ph.D. Dissertation, University of Tehran, Karaj, Iran.
  21. Kheiralipour, K., Ahmadi, H., Rajabipour, A., & Rafiee, S. (2018). Thermal imaging, principles, methods and applications. Ilam University Publication. Ilam, IR Iran.
  22. Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., & Javan-Nikkhah. M. (2015a). Classifying healthy and fungal infected-pistachio kernel by thermal imaging technology. International Journal of Food Properties, 18(1), 93-99. https://doi.org/10.1080/10942912.2012.717155
  23. Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., & Jayas, D. S. (2014). Detection of healthy and fungal-infected pistachios based on hyperspectral image processing. 8th Iranian national congress of agricultural machinery engineering (biosystems) and mechanization, 29-31 January, Mashahd, Iran.
  24. Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D. S., & Siliveru, K. (2015b). Detection of fungal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging technique. Quality Assurance and Safety of Crops & Foods, 8(1), 129-135. https://doi.org/10.3920/QAS2015.0606
  25. Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D. S., Siliveru, K., & Malihipour, A. (2021). Processing the hyperspectral images for detecting infection of pistachio kernel by R5 and KK11 isolates of Aspergillus flavus fungus. Iranian Journal of Biosystems Engineering, 52(1), 13-25. https://doi.org/10.22059/ijbse.2020.299712.665293
  26. Kheiralipour, K., Chelladurai, V., & Jayas, D. S. (2023a). Imaging Systems and Image Processing Techniques. In Image Processing: Advances in Applications and Research. Edited by Jayas, D.S. New York, USA: Nova Science Publishers.
  27. Kheiralipour, K., & Marzbani, F. (2016). Pomegranate quality sorting by image processing and artificial neural network. 10th Iranian national congress on agricultural machinery (biosystems) and mechanization, 29-31 August, Mashhad, Iran.
  28. Kheiralipour, K., Sajadipour, F., & Nargesi, M. H. (2025). Applications of spectral imaging in Biosystems engineering in Iran, A review. Recent Progress in Science, Accepted manuscript. https://doi.org/10.70462/rps.2025.2.007
  29. Kheiralipour, K., & Jayas, D. S. (2024). Current and future applications of hyperspectral imaging in agriculture, nature and food. Trends in Technical & Scientific Research, 7(2), 1-9.
  30. Kheiralipour, K., & Jayas, D. S. (2023). Applications of near infrared hyperspectral imaging in agriculture, natural resources, and food in Iran. 15th national and 1st international congress of mechanics of biosystems engineering and agricultural mechanization, Karaj, Iran.
  31. Li, C., He, M., Cai, Z., Qi, H., Zhang, J., & Zhang, C. (2023). Hyperspectral imaging with machine learning approaches for assessing soluble solids content of tribute citru. Foods, 12, 247. https://doi.org/10.3390/foods12020247.
  32. Lin, Y., Ma, J., Wang, Q., & Sun, D.-W. (2023). Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. Critical Reviews in Food Science and Nutrition, 63, 1649-1669. https://doi.org/10.1080/10408398.2022.2131725
  33. Min, D., Zhao, J., Bodner, G., Ali, M., Li, F., Zhang, X., & Rewald, B., (2023). Early decay detection in fruit by hyperspectral imaging–Principles and application potential. Food Control, 152, 109830. https://doi.org/10.1016/j.foodcont.2023.109830
  34. Nargesi, M. H., Amiriparian, j., Bagherpour, H., & Kheiralipour, K. (2024b). Detection of different adulteration in cinnamon powder using hyperspectral imaging and artificial neural network method. Results in Chemistry, 9, 101644. https://doi.org/10.1016/j.rechem.2024.101644
  35. Nargesi, M. H., & Kheiralipour, K. (2024). Visible feature engineering to detect adulteration in black and red peppers. Scientific Reports, 14, 25417. https://doi.org/10.1038/s41598-024-76617-1
  36. Nargesi, M. H., Kheiralipour, K., & Jayas, D. S. (2024c). Classification of different wheat flour types using hyperspectral imaging and machine learning techniques. Infrared Physics & Technology, 142, 105520. https://doi.org/10.1016/j.infrared.2024.105520
  37. Nargesi, M. H. (2024). Detection of fraud in black pepper, red pepper, and cinnamon powder using hyperspectral imaging and artificial neural network. Ph.D. Dissertation, University of Bu-Ali Sina. Pages 11-130.
  38. Nargesi, M. H., Heidarbeigi, K., Moradi, Z., & Abdolahi, S. (2024a). Detection of chlorine in potassium chloride and potassium sulfate using chemical imaging and artificial neural network. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 326, Pages, 125253. https://doi.org/10.1016/j.saa.2024.125253
  39. Naser, A. A. (2017). Study of response Trigonella foenum-graecum to spraying with high potassium (Miller) and high phosphor (Agroleaf). Tikrit Journal of Pure Science, 22(9), 6-10. https://doi.org/10.25130/tjps.v22i9.866
  40. Nashmil, F., Mardani, A., Hosainpour, A., & Golanbari, B. (2025). Prediction of Rut Depth in Soil Caused by Wheels Using Artificial Neural Networks. Journal of Agricultural Machinery, 15(2), 263-274. (in Persian with English abstract). https://doi.org/10.22067/jam.2024.90273.1295
  41. Noshirvani, N., & Mohebi, A. (2023). Investigation of chemical and microbial properties of date syrup during production stages (from raw material to final product). Iranian Journal of Food Science and Industry, 20(139). (in Persian). https://doi.org/10.22034/FSCT.20.139.109
  42. Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical Fertilizers and Their Impact on Soil Health. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_1
  43. Pandey, V., & Patra, D. (2015). Crop productivity, aroma profile and antioxidant activity in Pelargonium graveolens L’Hér. under integrated supply of various organic and chemical fertilizers. Industrial Crops Products, 67, 257-263. https://doi.org/10.1016/j.indcrop.2015.01.042
  44. Park, J.-J., Cho, J.-S., Lee, G., Yun, D.-Y., Park, S.-K., Park, K.-J., & Lim, J.-H. (2023). Detection of Red Pepper Powder Adulteration with Allura Red and Red Pepper Seeds Using Hyperspectral Imaging. Foods, 12, 3471. https://doi.org/10.3390/foods12183471
  45. Patil, A., & Lad, K. (2021). Chili Plant Leaf Disease Detection Using SVM and KNN Classification. Springer Nature Singapore Pte Ltd. 2021 S. Rathore et al. (eds.), Rising Threats in Expert Applications and Solutions, Advances in Intelligent Systems and Computing 1187. https://doi.org/10.1007/978-981-15-6014-9_26
  46. Perramon, B., Bosch-Serra, A., Domingo, F., & Boixadera, J. (2016). Organic and mineral fertilization management improvements to a double-annual cropping system under humid Mediterranean conditions. European Journal of Agronomy, 76, 28-40. https://doi.org/10.1016/j.eja.2016.01.014
  47. Qi, W., Wang, C., & Guo, X. (2017). Study on plant behavior perception based on computer vision: A review. Jiangsu Journal of Agricultural Sciences, 45, 20-26.
  48. Saha, D., & Manickavasagan, A. (2021). Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Current Research in Food Science, 4, 28-44. https://doi.org/10.1016/j.crfs.2021.01.002
  49. Salam, S., Kheiralipour, K., & Jian, F. (2022). Detection of unripe kernels and foreign materials in chickpea mixtures using image processing. Agriculture, 12(7), 995. https://doi.org/10.3390/agriculture12070995
  50. Sakinejad, T. (2003). Study of effect of water deficit on the trend of uptake of N, P, K and Na at different growth stages considering the morphological and physiological traits of maize in Ahvaz climate. Ph.D. Dissertation on Crop Physiology, Science and Research Branch, Ahvaz, Iran.
  51. Scharf, P. C., Kitchen, N. R., Sudduth, K. A., Davis, J. G., Hubbard, V. C., & Lory, J. A. (2005). Field‐scale variability in optimal nitrogen fertilizer rate for corn. Agronomy Journal, 97(2), 452-461. https://doi.org/10.2134/agronj2005.0452
  52. Shabbir Dar, J., Akhtar Cheema, M., Ishaq Asif Rehmani, M., Khuhro, S., Rajput, S., Latif Virk, A., Hussain, S., Amjad Bashir, M., Suliman, M., Al-Zuaibr, M., Javed Ansari, M., & Hessini, K. (2021). Potassium fertilization improves growth, yield and seed quality of sunflower (Helianthus annuus) under drought stress at different growth stages. PLoS ONE, 16(9), e0256075. https://doi.org/10.1371/journal. pone.0256075
  53. Sharma, S., Sirisomboon, P., Sumesh, K., Terdwongworakul, A., Phetpan, K., Kshetri, T. B., & Sangwanangkul, P. (2023). Near-infrared hyperspectral imaging combined with machine learning for physicochemical-based quality evaluation of durian pulp. Postharvest Biology and Technology, 200, 112334. https://doi.org/10.1016/j.postharvbio.2023.112334
  54. Siadat, S. A., & Moradi-Telavat, M. R. (2018). Practical Aspects of Organic Farming. Tehran: Agricultural Education and Extension Press, 500 p. (in Persian).
  55. Soni, A., Dixit, Y., Reis, M. M., & Brightwell, G. (2022). Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants. Comprehensive Reviews in Food Science and Food Safety, 21, 3717-3745. https://doi.org/10.1111/1541-4337.12983
  56. Sun, Y., Tong. Ch., He, Sh., Wang, K., & Chen, L. (2018). Identification of Nitrogen, Phosphorus, and Potassium Deficiencies Based on Temporal Dynamics of Leaf Morphology and Color. Sustainability, 10, 762. https://doi.org/10.3390/su10030762
  57. Vadivambal, R., & Jayas, D. S. (2016) Bio-Imaging: Principles, Techniques, and Applications. CRC Press, Taylor and Francis Group, New York, NY, US.
  58. Wu, X. Y., Zhu, S. P., Huang, H., & Xu, D. (2017). Quantitative identification of adulterated sichuan pepper powder by near-infrared spectroscopy coupled with chemometrics. Journal of Food Qualit, https://doi.org/10.1155/2017/5019816
  59. Xue, X., Tian, H., Zhao, K., Yu, Y., Zhuo, C., Xiao, Z., & Wan, D. (2025). Non-Destructive Detection of pH Value During Secondary Fermentation of Maize Silage Using Colorimetric Sensor Array Combined with Hyperspectral Imaging Technology. Agronomy, 15, 285. https://doi.org/10.3390/agronomy15020285
  60. Yang, F., Sun, J., Cheng, J., Fu, L., Wang, S., & Xu, M. (2023). Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. Journal of Food Process Engineering, 46, https://doi.org/10.1111/jfpe.14304
  61. Zhao, J., Ni, T., Li, J., Lu, Q., Fang, Z., Huang, Q., Zhang, R., Li, R., Shen, B., & Shen, Q. (2016). Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Applied Soil Ecology, 99, 1-12. https://doi.org/10.1016/j.apsoil.2015.11.006
CAPTCHA Image