نوع مقاله : مقاله پژوهشی انگلیسی
نویسندگان
بخش مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران
چکیده
خشککردن یکی از روشهای حیاتی نگهداری در صنعت غذا است که با کاهش رطوبت، کیفیت محصول را حفظ کرده و ماندگاری آن را افزایش میدهد. این فرآیند شامل مکانیزمهای پیچیده انتقال حرارت و جرم بوده و به مدلهای پیشبینی دقیقی نیاز دارد. در این مطالعه، روشهای مختلف مدلسازی شامل مدلهای رگرسیون، مدلهای نیمهتجربی، و روشهای مبتنی بر هوش مصنوعی (AI) برای شبیهسازی فرآیند خشککردن برشهای سیبزمینی مورد مقایسه قرار گرفتند. آزمایشهای خشککردن در دماهای 40، 50 و 60 درجه سانتیگراد، با و بدون استفاده از مواد تغییر فازدهنده (PCM) و تابش مادون قرمز (IR) انجام شد. مدلهای هوش مصنوعی شامل شبکه عصبی مصنوعی (ANN)، ماشین بردار پشتیبان (SVM) و جنگل تصادفی (RF) با استفاده از دادههای تجربی آموزش دیده و اعتبارسنجی شدند. عملکرد این مدلها با مدلهای سنتی و نیمهتجربی از نظر ضریب تعیین (R2)، ریشه میانگین مربع خطا (RMSE)، میانگین قدرمطلق خطا (MAE) و خطای میانگین بایاس (MBE) مقایسه شد. نتایج نشان داد که شبکه عصبی مصنوعی (ANN) با دقت پیشبینی بسیار بالا (R2= 0.998, RMSE= 0.0656) بهترین عملکرد را داشته و از سایر مدلها دارای دقت بیشتری است. روشSVM نیز قابلیت پیشبینی مناسبی نشان داد، در حالیکه RF عملکردی اندکی ضعیفتر داشت. در میان مدلهای نیمهتجربی، مدل میدیلی (Midilli) بهترین برازش را داشت، اما نسبت به مدلهای مبتنی بر هوش مصنوعی دقت کمتری نشان داد. این یافتهها برتری روشهای مبتنی بر هوش مصنوعی، بهویژه ANN، را در بهینهسازی فرآیند خشککردن در صنعت غذا برجسته میسازد.
کلیدواژهها
موضوعات
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- AOAC (2000). AOAC Official Method 934.06: Moisture in dried fruits. In Official Methods of Analysis (17th ed.). Gaithersburg, MD: AOAC International.
- Atia, A., Teggar, M., & Laouer, A. (2024). Performance of various solar dryer types integrating latent heat storage for drying agricultural products: An up-to-date review. Journal of Energy Storage, 102, 114048. https://doi.org/10.1016/j.est.2024.114048
- Azadbakht, M., Torshizi, M. V., Aghili, H., & Ziaratban, A. (2018). Application of artificial neural network (ANN) in drying kinetics analysis for potato cubes. Carpathian Journal of Food Science & Technology, 10(2), 96-106.
- Benseddik, A., Azzi, A., & Allaf, K. (2018). Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food, 11(4), 220-231. https://doi.org/10.1016/j.eaef.2018.07.003
- Chokphoemphun, S., Hongkong, S., & Chokphoemphun, S. (2024). Artificial neural network for drying behavior prediction of paddy in developed chamber fluidized–bed dryer. Computers and Electronics in Agriculture, 220, 108888. https://doi.org/10.1016/j.compag.2024.108888
- Chukwunonye, C. D., Nnaemeka, N. R., Chijioke, O. V., & Obiora, N. C. (2016). Thin layer drying modelling for some selected Nigerian produce: a review. American Journal of Food Science and Nutrition Research, 3(1), 1-15.
- Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.
- Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701-717. https://doi.org/10.1080/10408398.2014.910493
- Fartash Naeimi, E., Khoshtaghaza, M. H., Selvi, K. Ç., Ungureanu, N., & Abbasi, S. (2024). Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms. Agriculture, 14(12), 2351.https://doi.org/10.3390/agriculture14122351
- Fathi, M., Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Thin-layer drying of tea leaves: Mass transfer modeling using semi-empirical and intelligent models. International Food Research Journal, 23(1), 40.
- Karaağaç, M. O., Ergün, A., Ağbulut, Ü., Gürel, A. E., & Ceylan, I. (2021). Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms. Solar Energy, 218, 57-67. https://doi.org/10.1016/j.solener.2021.02.028
- Karakaplan, N., Goz, E., Tosun, E., & Yuceer, M. (2019). Kinetic and artificial neural network modeling techniques to predict the drying kinetics of Mentha spicataJournal of Food Processing and Preservation, 43(10), e14142. https://doi.org/10.1111/jfpp.14142
- Kaveh, M., Abbaspour-Gilandeh, Y., & Emadi, B. (2020). Application of artificial intelligence methods for predicting drying kinetics of fruits and vegetables: A review. Journal of Food Process Engineering, 43(8), e13477. https://doi.org/10.1111/jfpe.13477
- Kelleher, J. D. (2019). Deep learning. MIT press.
- Kumar, R., Kumar, P., Hota, N. K., & Pandey, O. P. (2025). Semi-empirical thin-layer drying model for the agricultural products. Chemical Engineering Communications, 212(5), 728-738. https://doi.org/10.1080/00986445.2024.2432672
- Kutlu, N., İșcİ, A., & Demİrkol, Ö. Ș. (2015). Thin layer drying models in food systems.
- Lee, H. J., Lee, S. K., Kim, H., Kim, W., & Han, J. W. (2016). Thin-layer Drying Characteristics of Rapeseed. Journal of Biosystems Engineering, 41(3), 232-239.
- Lopes, S., Santos, S., Rodrigues, N., Pinho, P., & Viegas, D. X. (2023). Modelling sorption processes of 10-h dead Pinus pinaster branches. International Journal of Wildland Fire, 32(6), 903-912. https://doi.org/10.1071/WF22127
- Madhankumar, S., Viswanathan, K., Wu, W., & Taipabu, M. I. (2023). Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Solar Energy, 249, 667-683. https://doi.org/10.1016/j.solener.2022.12.009
- Mahesh, J. S., Rengaraju, B., & Selvakumarasamy, S. (2024). Effect of ANN and semi-empirical models on dried Annona muricata leaves. Biomass Conversion and Biorefinery, 1-13. https://doi.org/10.1007/s13399-024-05546-w
- Perazzini, H., Freire, F. B., & Freire, J. T. (2013). Drying kinetics prediction of solid waste using semi‐empirical and artificial neural network models. Chemical Engineering & Technology, 36(7), 1193-1201. https://doi.org/10.1002/ceat.201200593
- Pham, Q. T., Shrivastava, A., & Karim, M. A. (2021). Numerical modeling of food drying processes using computational fluid dynamics (CFD): A review. Journal of Food Engineering, 301, 110565. https://doi.org/10.1016/j.jfoodeng.2021.110565
- Poonia, S., Singh, A. K., & Jain, D. (2022). Performance evaluation of phase change material (PCM) based hybrid photovoltaic/thermal solar dryer for drying arid fruits. Materials Today: Proceedings, 52, 1302-1308. https://doi.org/10.1016/j.matpr.2021.11.058
- Rakshamuthu, S., Jegan, S., Benyameen, J. J., Selvakumar, V., Anandeeswaran, K., & Iyahraja, S. (2021). Experimental analysis of small size solar dryer with phase change materials for food preservation. Journal of Energy Storage, 33, 102095. https://doi.org/10.1016/j.est.2020.102095
- Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., & Tanaś, W. (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific Reports, 11(1), 9155. https://doi.org/10.1038/s41598-021-88270-z
- Sabzevari, M., Behroozi‐Khazaei, N., & Darvishi, H. (2021). Real‐time evaluation of artificial neural network‐developed model of banana slice kinetics in microwave‐hot air dryer. Journal of Food Process Engineering, 44(9), e13796. https://doi.org/10.1111/jfpe.13796
- Saleem, M., & Ali, I. (2017, September). Machine learning based prediction of pyrolytic conversion for red sea seaweed. In Proceedings of the 7th International Conference on Biological, Chemical & Environmental Sciences (BCES-2017), Budapest, Hungary(pp. 6-7). https://doi.org/10.17758/EAP.C0917043
- Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201. https://doi.org/10.1016/j.tifs.2017.01.003
- Topal, M. E., Şahin, B., & Vela, S. (2024). Artificial Neural Network Modeling Techniques for Drying Kinetics of Citrus medica Fruit during the Freeze-Drying Process. Processes, 12(7), 1362. https://doi.org/10.3390/pr12071362
- Zhang, Q., Wang, M., & Zhu, Z. (2019). Machine learning models for predicting drying kinetics in food processing: A case study on apple slices. Drying Technology, 37(11), 1367-1379. https://doi.org/10.1080/07373937.2018.1535158
ارسال نظر در مورد این مقاله