با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی انگلیسی

نویسندگان

1 گروه مهندسی ماشین‌های کشاورزی و مکانیزاسیون، دانشکده مهندسی زراعی و عمران روستائی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 گروه مهندسی اقتصاد کشاورزی، دانشکده مهندسی زراعی و عمران روستائی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

3 گروه مهندسی سیستم‌های هوشمند، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

10.22067/jam.2025.95519.1432

چکیده

با تشدید فشارهای ناشی از محدودیت منابع، تغییرات اقلیمی و کمبود نیروی کار روستایی، مکانیزاسیون کشاورزی به اهرمی استراتژیک برای ارتقای بهره‌وری تبدیل شده است. این مطالعه یک مدل پویایی سیستم را برای بررسی اثرات بلندمدت مکانیزاسیون بر سطح زیرکشت و عملکرد گندم در نظام‌های خرده‌مالکی توسعه داد. پژوهش با ترسیم نمودار حلقه علی (CLD) برای مفهوم‌سازی ساختارهای بازخورد کلیدی آغاز شد. سپس یک مدل شبیه‌سازی موجودی و جریان، با استفاده از داده‌های استان خوزستان (2022-2011) تدوین و اعتبارسنجی شد. نتایج، همخوانی قوی بین روندهای شبیه‌سازی شده و مشاهداتی را در شاخص‌های اصلی نشان داد. از مدل برای شبیه‌سازی سناریوهای سیاستی مختلف شامل نوسازی ناوگان ماشین‌ها، دسترسی به آب و تغییرپذیری بارندگی استفاده شد. افزایش 30 درصدی نرخ جایگزینی ماشین‌آلات منجر به افزایش 7 درصدی عملکرد و 1 درصدی سطح زیرکشت نسبت به پایه شد. هنگامی که بهبود مکانیزاسیون با دسترسی بهتر آب ترکیب شد، اثر نهایی آن بر استفاده از زمین کاهش یافت که نشان‌دهنده تمایل کشاورزان به کشت محصولات باارزش در شرایط هیدرولوژیک مطلوب است. در مقابل، در شرایط کم‌آبی، کشت گندم به‌دلیل سازگاری و کارایی ناشی از مکانیزاسیون، گسترش یافت. این یافته‌ها بر اهمیت توجه به تعامل آب و مکانیزاسیون در طراحی سیاست‌ها، به‌ویژه در مناطق خشک تأکید می‌کنند. مدل ارائه‌شده، ابزار انعطاف‌پذیر و مبتنی بر تجربه برای پشتیبانی از تصمیم‌گیری در راستای بهبود تاب‌آوری اقلیمی و استفاده بهینه از منابع فراهم می‌کند.

کلیدواژه‌ها

موضوعات

Authors retain the copyright. This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ahmed, H., & Ahmed, M. (2023). Influencing factors on adoption of modern agricultural technology in developing economy countries. Developing Country Studies, 13(2), 1-15. https://iiste.org/Journals/index.php/DCS/article/view/60396
  2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109. https://www.fao.org/4/x0490e/x0490e00.htm
  3. Amoozad-Khalili, M., Rostamian, R., Esmaeilpour-Troujeni, M., & Kosari-Moghaddam, A. (2020). Economic modeling of mechanized and semi-mechanized rainfed wheat production systems using multiple linear regression model. Information Processing in Agriculture, 7(1), 30-40. https://doi.org/10.1016/j.inpa.2019.06.002
  4. Anonymous. (2018). Sectoral Paper on Farm Mechanization. Farm Sector Policy Department NABARD Head Office, NABARD, 1-40. https://aspirecircle.org/wp-content/uploads/2022/01/NSP-Farm-Mechanisation-AGRI.pdf
  5. Araújo, R. G., Chavez-Santoscoy, R. A., Parra-Saldívar, R., Melchor-Martínez, E. M., & Iqbal, H. M. N. (2023). Agro-food systems and environment: Sustaining the unsustainable. Current Opinion in Environmental Science & Health, 31, 100413. https://doi.org/10.1016/j.coesh.2022.100413
  6. Aryal, J. P., Rahut, D. B., Thapa, G., & Simtowe, F. (2021). Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey. Technology in Society, 65, 101591. https://doi.org/10.1016/j.techsoc.2021.101591
  7. Belton, B., Win, M. T., Zhang, X., & Filipski, M. (2021). The rapid rise of agricultural mechanization in Myanmar. Food Policy, 101, 102095. https://doi.org/10.1016/j.foodpol.2021.102095
  8. Biggs, S., & Justice, S. (2015). Rural and agricultural mechanization: A history of the spread of small engines in selected Asian countries. https://ideas.repec.org/p/fpr/ifprid/1443.html
  9. Bissadu, K. D., Sonko, S., & Hossain, G. (2024). Society 5.0 enabled agriculture: Drivers, enabling technologies, architectures, opportunities, and challenges. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2024.04.003
  10. Chaudhary, A. K., Pandit, R., & Burton, M. (2022). Farmyard manure use and adoption of agricultural mechanization among smallholders in the Mahottari District, Nepal. World Development Perspectives, 25, 100394. https://doi.org/10.1016/j.wdp.2022.100394
  11. Chisadza, B., Gwate, O., Musinguzi, S. P., Mpofu, N., Macherera, M., & Dube, T. (2025). Resilient agriculture in semi-arid Zimbabwe: adaptation strategies and influencers among smallholder farmers. Discover Agriculture, 3(1), 76. https://doi.org/10.1007/s44279-025-00234-3
  12. Conforti, P. (2001). The common agricultural policy in main partial equilibrium models. https://ideas.repec.org/p/ags/ineawp/14806.html
  13. Daum, T. (2023). Mechanization and sustainable agri-food system transformation in the Global South. A review. Agronomy for Sustainable Development, 43(1), 16. https://doi.org/10.1007/s13593-023-00868-x
  14. Daum, T., Adegbola, Y. P., Kamau, G., Kergna, A. O., Daudu, C., Zossou, R. C., …, & Ndirpaya, Y. (2020). Perceived effects of farm tractors in four African countries, highlighted by participatory impact diagrams. Agronomy for Sustainable Development, 40, 1-19. https://doi.org/10.1007/s13593-020-00651-2
  15. Daum, T., & Birner, R. (2020). Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26, 100393. https://doi.org/10.1016/j.gfs.2020.100393
  16. Dedewanou, F. A., & Kpekou Tossou, R. C. B. (2022). Remittances and agricultural productivity in Burkina Faso. Applied Economic Perspectives and Policy, 44(3), 1573-1590. https://doi.org/10.1002/aepp.13188
  17. Diao, X., Silver, J., & Takeshima, H. (2016). Agricultural mechanization and agricultural transformation (Vol. 1527). Intl Food Policy Res Inst. https://doi.org/10.2499/9780896298753
  18. Emami, M., Almassi, M., Bakhoda, H., & Kalantari, I. (2018). Agricultural mechanization, a key to food security in developing countries: strategy formulating for Iran. Agriculture & Food Security, 7, 1-12. https://doi.org/10.1186/s40066-018-0176-2
  19. Fang, D., Chen, J., Wang, S., & Chen, B. (2024). Can agricultural mechanization enhance the climate resilience of food production? Evidence from China. Applied Energy, 373, 123928. https://doi.org/10.1016/j.apenergy.2024.123928
  20. Hamilton, S. F., Richards, T. J., Shafran, A. P., & Vasilaky, K. N. (2022). Farm labor productivity and the impact of mechanization. American Journal of Agricultural Economics, 104(4), 1435-1459. https://doi.org/10.1111/ajae.12273
  21. Hoekstra, A. Y., Chapagain, A., Martinez-Aldaya, M., & Mekonnen, M. (2009). Water footprint manual: State of the art 2009. https://ris.utwente.nl/ws/portalfiles/portal/5146564/Hoekstra09WaterFootprintManual.pdf
  22. Hormozi, M. A., Asoodar, M. A., & Abdeshahi, A. (2012). Impact of mechanization on technical efficiency: A case study of rice farmers in Iran. Procedia Economics and Finance, 1, 176-185. https://doi.org/10.1016/S2212-5671(12)00021-4
  23. Huo, Y., Ye, S., Wu, Z., Zhang, F., & Mi, G. (2022). Barriers to the development of agricultural mechanization in the North and Northeast China plains: A farmer survey. Agriculture, 12(2), 287. https://doi.org/10.3390/agriculture12020287
  24. Isaak, M., Yahya, A., Razif, M., & Mat, N. (2020). Mechanization status based on machinery utilization and workers’ workload in sweet corn cultivation in Malaysia. Computers and Electronics in Agriculture, 169, 105208. https://doi.org/10.1016/j.compag.2019.105208
  25. Jalalzadeh, B., Borghei, A. M., & Almassi, M. (2016). Modeling the effect of mechanization level index on crop yield approaching system dynamics methodology. https://doi.org/10.18006/2016.4(2).169.179
  26. Keshvari, A., & Marzban, A. (2018). Zoning tthe Distribution of Required Agricultural Tractor Power in Khuzestan Province Using FCM Cluster Analysis. Agricultural Mechanization and Systems Research, 19(71), 125-138. https://doi.org/10.22111/gdij.2019.4596
  27. Keshvari, A., & Marzban, A. (2019). Prioritizing the power arrival in Khuzestan province agriculture using FAHP and FTOPSIS. https://doi.org/10.22067/jam.v9i1.69258
  28. Khatri, P., Kumar, P., Shakya, K. S., Kirlas, M. C., & Tiwari, K. K. (2024). Understanding the intertwined nature of rising multiple risks in modern agriculture and food system. Environment, Development and Sustainability, 26(9), 24107-24150. https://doi.org/10.1007/s10668-023-03638-7
  29. Kienzle, J., Ashburner, J. E., & Sims, B. G. (2013). Mechanization for rural development: a review of patterns and progress from around the world. https://openknowledge.fao.org/handle/20.500.14283/i3259e
  30. Khuzestan Water Authority. (2020). Annual hydrological report of Khuzestan Province 2020: Agricultural water availability and allocation. Ministry of Energy, Ahvaz, Iran.
  31. Yasir, H., Tahir, H., & Awan, A. G. (2025). Full mechanization: a path to increased farm income, food security, and environmental quality in developing countries. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05720-0
  32. Liu, X., & Li, X. (2023). The influence of agricultural production mechanization on grain production capacity and efficiency. Processes, 11(2), 487. https://doi.org/10.1007/s10668-024-05720-0
  33. Lu, F., Meng, J., & Cheng, B. (2024). How does improving agricultural mechanization affect the green development of agriculture? Evidence from China. Journal of Cleaner Production, 472, 143298. https://doi.org/10.1016/j.jclepro.2024.143298
  34. Manida, M. (2022). The future of food and agriculture trends and challenges. Agriculture & Food E-Newsletter, 4(2), 27-29. https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content
  35. Min, S. H. I., & Paudel, K. P. (2021). Mechanization and efficiency in rice production in China. Journal of Integrative Agriculture, 20(7), 1996-2008. https://doi.org/10.1016/S2095-3119(20)63439-6
  36. Ministry of Agriculture Jihad. (2011–2022). Statistical yearbook of agricultural machinery and wheat production (Provincial data reports). Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
  37. Mitiku Degu, Y., DK Nageswara, R., Moges Ketsela, G., & Workneh Fanta, S. (2025). Estimation of Mechanization Index and Farm Power Density: Case Study of Smallholder Farmers in Bure District, Ethiopia. Journal of Agricultural Machinery. https://doi.org/10.22067/jam.2025.92764.1373
  38. Mohammed, K., Batung, E., Saaka, S. A., Kansanga, M. M., & Luginaah, I. (2023). Determinants of mechanized technology adoption in smallholder agriculture: Implications for agricultural policy. Land Use Policy, 129, 106666. https://doi.org/10.1016/j.landusepol.2023.106666
  39. Paudel, G. P., Kc, D. B., Khanal, N. P., Justice, S. E., & McDonald, A. J. (2019). Smallholder farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal. Technology in Society, 59, 101196. https://doi.org/10.1016/j.techsoc.2019.101196
  40. Peng, J., Zhao, Z., & Liu, D. (2022). Impact of agricultural mechanization on agricultural production, income, and mechanism: evidence from Hubei province, China. Frontiers in Environmental Science, 10, 838686. https://doi.org/10.3389/fenvs.2022.838686
  41. Qiao, F. (2017). Increasing wage, mechanization, and agriculture production in China. China Economic Review, 46, 249-260. https://doi.org/10.1016/j.chieco.2017.10.002
  42. Rabet, G. R., Bahrami, H., & Sheikhdavoodi, M. J. (2014). Study of Primary Tillage Timeliness Cost for Irrigated Wheat in Fars Province Using System Dynamics. https://doi.org/10.22067/jam.v3i2.25174
  43. Rahman, M. M., Ali, M. R., Oliver, M. M. H., Hanif, M. A., Uddin, M. Z., Saha, K. K., …, & Moniruzzaman, M. (2021). Farm mechanization in Bangladesh: A review of the status, roles, policy, and potentials. Journal of Agriculture and Food Research, 6, 100225. https://doi.org/10.1016/j.jafr.2021.100225
  44. Rath, I., Pradhan, P. L., Dash, R. C., Mahapatra, M., Sahoo, P. K., Behera, A., & Verma, K. (2024). Assessment of Mechanization Indices: Insights from Rice-Growing Region of the Southern Asia–Pacific Region. Journal of The Institution of Engineers (India): Series A, 105(3), 719-732. https://doi.org/10.1007/s40030-024-00815-3
  45. Ravikishore, M., Supriya, P., & Subbaiah, S. K. R. (2022). Farm Mechanisation: Policies, Challenges and Strategies. The Agriculture Magazine, 2(1), 118-126. https://www.researchgate.net/publication/366356313_Farm_Mechanisation_Policies_Challenges_and_Strategies
  46. Sanaullah, A. B., & Ullah, I. (2021). Challenges and prospects of farm mechanization in Pakistan: A case study of rural farmers in District Peshawar Khyber Pakhtunkhwa. Sarhad Journal of Agriculture, 37(1), 167-179. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20210231066
  47. Sarkar, A. (2020). Agricultural mechanization in India: A study on the ownership and investment in farm machinery by cultivator households across agro-ecological regions. Millennial Asia, 11(2), 160-186. https://doi.org/10.1177/0976399620925440
  48. Sibhatu, K. T., & Qaim, M. (2017). Rural food security, subsistence agriculture, and seasonality. PloS One, 12(10), e0186406. https://doi.org/10.1371/journal.pone.0186406
  49. Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., …, & McElwee, P. (2020). Which practices co‐deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology, 26(3), 1532-1575. https://doi.org/10.1111/gcb.14878
  50. Statistical Center of Iran. (2011–2022). Agricultural statistics yearbook: National agricultural production statistics (2011–2022). Tehran, Iran: Statistical Center of Iran. Retrieved from https://www.amar.org.ir
  51. Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA: Irwin/McGraw-Hill.
  52. Sun, M., Wan, Y., Wang, S., Liang, J., Hu, H., & Cheng, L. (2024). Analysis of the Impact of Agricultural Mechanization on the Economic Efficiency of Maize Production. Sustainability, 16(13), 5522. https://doi.org/10.3390/su16135522
  53. Sun, P., Liu, R., Yao, R., Shen, H., & Bian, Y. (2023). Responses of agricultural drought to meteorological drought under different climatic zones and vegetation types. Journal of Hydrology, 619, 129305. https://www.sciencedirect.com/science/article/abs/pii/S0022169423002470
  54. Taheri, N., Jahani, H., & Pishvaee, M. S. (2024). Modeling sustainable bioethanol supply chain in Australia: A system dynamics approach. Renewable Energy, 227, 120481. https://doi.org/10.1016/j.renene.2024.120481
  55. Takeshima, H., Edeh, H. O., Lawal, A. O., & Isiaka, M. A. (2015). Characteristics of Private‐Sector Tractor Service Provisions: Insights from N igeria. The Developing Economies, 53(3), 188-217. https://doi.org/10.1111/deve.12077
  56. Turner, B. L., Menendez, H. M., Gates, R., Tedeschi, L. O., & Atzori, A. S. (2016). System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles. Resources. https://doi.org/10.3390/resources5040040
  57. Van den Berg, M. M., Hengsdijk, H., Wolf, J., Van Ittersum, M. K., Guanghuo, W., & Roetter, R. P. (2007). The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China. Agricultural Systems, 94(3), 841-850. https://doi.org/10.1016/j.agsy.2006.11.010
  58. Wang, T., Liu, H., & Wang, Z. (2025). Decomposing the Impact of Agricultural Mechanization on Agricultural Output Growth: A Case Study Based on China’s Winter Wheat. Sustainability. https://doi.org/10.3390/su17051777
  59. Wang, X., Dong, Z., & Sušnik, J. (2023). System dynamics modelling to simulate regional water-energy-food nexus combined with the society-economy-environment system in Hunan Province, China. Science of The Total Environment, 863, 160993. https://doi.org/10.1016/j.scitotenv.2022.160993
  60. Winarno, K., Sustiyo, J., Aziz, A. A., & Permani, R. (2025). Unlocking agricultural mechanisation potential in Indonesia: Barriers, drivers, and pathways for sustainable agri-food systems. Agricultural Systems, 226, 104305. https://doi.org/10.1016/j.agsy.2025.104305
  61. Wittwer, R. A., Bender, S. F., Hartman, K., Hydbom, S., Lima, R. A. A., Loaiza, V., …, & Petchey, O. (2021). Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 7(34), eabg6995. https://doi.org/10.1126/sciadv.abg6995
  62. Wu, Z., Dang, J., Pang, Y., & Xu, W. (2021). Threshold effect or spatial spillover? The impact of agricultural mechanization on grain production. Journal of Applied Economics, 24(1), 478-503. https://doi.org/10.1080/15140326.2021.1968218
  63. Yamin, M., Tahir, A., Awan, A., & Yaseen, M. (2011). Studying the impact of farm mechanization on wheat production in Punjab-Pakistan. Soil and Environment, 30, 151-154. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113380591
  64. Yan, F., Sun, X., Chen, S., & Dai, G. (2024). Does agricultural mechanization improve agricultural environmental efficiency? Frontiers in Environmental Science, 11, 1344903. https://doi.org/10.1007/s11356-022-19642-9
  65. Yang, J., Huang, Z., Zhang, X., & Reardon, T. (2013). The rapid rise of cross-regional agricultural mechanization services in China. American Journal of Agricultural Economics, 95(5), 1245-1251. https://doi.org/10.1093/ajae/aat027
  66. Yasar, H., Raza, M. H., Faisal, M., Nadeem, N., Khan, N., Kassem, H. S., …, & Mahmood, S. (2024). Does farm mechanization improve farm performance and ensure food availability at household level? Empirical evidence from Pakistan. Frontiers in Sustainable Food Systems, 8, 1453221. https://doi.org/10.3389/fsufs.2024.1453221
  67. Zhou, C., Li, X., Lin, X., & Cheng, M. (2022). Influencing factors of the high-quality economic development in China based on LASSO model. Energy Reports, 8, 1055-1065. https://doi.org/10.1016/j.egyr.2022.10.167
  68. Zhou, X., & Ma, W. (2022). Agricultural mechanization and land productivity in China. International Journal of Sustainable Development & World Ecology, 29(6), 530-542. https://doi.org/10.1080/13504509.2022.2051638
  69. Zhu, Y., Zhang, Y., & Piao, H. (2022). Does agricultural mechanization improve agricultural environment efficiency? Evidence from China’s planting industry. Environmental Science and Pollution Research, 29(35), 53673–53690. https://doi.org/10.1007/s11356-022-19642-9
  70. Zou, B., Chen, Y., Mishra, A. K., & Hirsch, S. (2024). Agricultural mechanization and the performance of the local Chinese economy. Food Policy, 125, 102648. https://doi.org/10.1016/j.foodpol.2024.102648
CAPTCHA Image