با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله کوتاه انگلیسی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه بورنئوی تاراکان، اندونزی

2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه بورنئوی تاراکان، اندونزی

3 گروه مهندسی خودرو، دانشکده مهندسی خودرو، مکانیک و مکاترونیک، دانشگاه مانیپال جیپور، هند

چکیده

عملکرد تراکتورهای دستی کوچک برای بهبود بهره‌وری و کارایی عملیاتی برای تولید برنج تالابی بسیار مهم است. این مطالعه با هدف ارزیابی اثرات نوع شخم، الگوی شخم و سرعت عملیات بر عملکرد تراکتور دستی کوچک در منطقه مرزی تاراکان، اندونزی انجام شد. آزمایش‌های میدانی از سپتامبر 2024 تا ژانویه 2025 با استفاده از طرح فاکتوریل (3×5×2) و تحلیل توصیفی کمی با SPSS Statistics 26 برای مقایسه عددی انجام شد. شاخص‌های عملکرد شامل لغزش چرخ (%)، راندمان مزرعه (%)، مصرف سوخت (لیتر در ساعت) و دمای موتور (C°) هستند. نتایج نشان داد که شخم با گاوآهن دوار (تیلر) که تحت الگوی شخم از مرکز با سرعت کم (1 متر بر ثانیه) کار می‌کرد، بالاترین راندمان مزرعه (%78) و کمترین مصرف سوخت (1.306 لیتر در ساعت) را به‌دست آورد. در مقابل، گاوآهن بشقابی با الگوی شخم از محیط در سرعت بالا (2.3 متر بر ثانیه) بیشترین لغزش چرخ (%48) و کمترین راندمان (%22) را ایجاد کرد که نشان‌دهنده افت قابل‌توجه عملکرد به دلیل درگیری بیش از حد خاک-چرخ است. دمای موتور متناسب با سرعت تراکتور افزایش یافت و در طول عملیات با سرعت بالا به 70 درجه سانتی‌گراد رسید. این یافته‌ها نشان می‌دهند که بهینه‌سازی نوع شخم و انتخاب الگوی شخم می‌تواند راندمان تراکتور را تا %56 افزایش دهد، مصرف سوخت را 0.8 لیتر در ساعت کاهش داده و پایداری عملیاتی را در شرایط تالاب بهبود بخشد. این مطالعه توصیه‌های عملی برای انتخاب و بهره‌برداری از تراکتورهای دستی کوچک برای افزایش بهره‌وری انرژی و پایداری در سیستم‌های مکانیزاسیون تالاب در مناطق مرزی جنوب شرقی آسیا ارائه می‌دهد.

کلیدواژه‌ها

موضوعات

Authors retain the copyright. This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abrahám, R., Majdan, R., Kollárová, K., Tkáč, Z., Hajdu, Š., Kubík, Ľ., & Masarovičová, S. (2022). Fatigue Analysis of Spike Segment of Special Tractor Wheels in Terms of Design Improvement for Chernozem Soil. Agriculture, 12(4), 471. https://doi.org/10.3390/agriculture12040471
  2. Adewoyin, A. O., & Ajav, E. A. (2013). Fuel consumption of some tractor models for ploughing operations in the sandy-loam soil of Nigeria at various speeds and ploughing depths. Agricultural Engineering International: CIGR Journal, 15(3), 67-74.
  3. Aybek, A., Kamer, H. A., & Arslan, S. (2010). Personal Noise Exposures of Operators of Agricultural tractors. Applied Ergonomics, 41(2), 274-281. https://doi.org/10.1016/j.apergo.2009.07.006
  4. Bhooshan, N., Raman, M. S., Gupta, S., Suyal, G., Singh, A., & Sharma, A. (2024). Revolutionizing agriculture: role of agricultural mechanization and global trends in farming technology. Current Science, 126(10), 1209-1216. https://doi.org/10.18520/cs/v126/i10/1209-1216
  5. Chartres, C. J., & Noble, A. (2015). Sustainable intensification: overcoming land and water constraints on food production. Food Security, 7, 235-245. https://doi.org/10.1007/s12571-015-0425-1
  6. Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 64016. https://doi.org/10.1088/1748-9326/aa6cd5
  7. Cole, M. B., Augustin, M. A., Robertson, M. J., & Manners, J. M. (2018). The science of food security. Npj Science of Food, 2(1), 14. https://doi.org/10.1038/s41538-018-0021-9
  8. Daum, T., Seidel, A., Awoke, B. G., & Birner, R. (2023). Animal traction, two-wheel tractors, or four-wheel tractors? A best-fit approach to guide farm mechanization in Africa. Experimental Agriculture, 59, e12. https://doi.org/10.1017/S0014479723000091
  9. de Melo, R. R., Tofoli, F. L., Daher, S., & Antunes, F. L. M. (2022). Wheel slip control applied to an electric tractor for improving tractive efficiency and reducing energy consumption. Sensors, 22(12), 4527. https://doi.org/10.3390/s22124527
  10. Ding, R., Qi, X., Chen, X., Mei, Y., & Li, A. (2025). The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions. Applied Sciences, 15(13), 7505. https://doi.org/10.3390/app15137505
  11. Evans, C. D., Morrison, R., Cumming, A., Bodo, A., Burden, A., Callaghan, N., Clilverd, H., Cooper, H., Cowan, N., & Crabtree, D. (2023). Defra Lowland Peat 2: Managing agricultural systems on lowland peat for decreased greenhouse gas emissions whilst maintaining agricultural productivity. Report to Defra for Project SP1218.
  12. Galli, L. E. (2024). Sustainability of agricultural tractors usage in open field and in specialized crops, from the performance and environmental standpoints.
  13. Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. Farming System, 1(1), 100005. https://doi.org/10.1016/j.farsys.2023.100005
  14. He, C., Wang, Y.-Q., Yu, W.-B., Kou, Y.-H., Yves, B. N., Zhao, X., & Zhang, H.-L. (2022). Comprehensive analysis of resource utilization efficiency under different tillage systems in North China Plain. Journal of Cleaner Production, 347, 131289. https://doi.org/10.1016/j.jclepro.2022.131289
  15. Herranz-Matey, I. (2025). Analyzing tractor productivity and efficiency evolution: A methodological and parametric assessment of the impact of variations in propulsion system design. Agriculture, 15(15), 1577. https://doi.org/10.3390/agriculture15151577
  16. Hobbs, P. R. (2021). Tillage and crop establishment in South Asian rice-wheat systems: Present practices and future options. In The Rice-Wheat Cropping System of South Asia (pp. 1–22). CRC Press. https://doi.org/10.1201/9781003210658-1
  17. Idkham, M., Dhafir, M., & Putri, L. (2021). Functional and performance test of modified lug wheel on two wheels tractor with pivot type trailer. IOP Conference Series: Earth and Environmental Science, 922(1), 12016.
  18. Iram, S., Iqbal, A., Ahmad, K. S., & Jaffri, S. B. (2020). Congruously designed eco-curative integrated farming model designing and employment for sustainable encompassments. Environmental Science and Pollution Research, 27(16), 19543-19560. https://doi.org/10.1007/s11356-020-08499-5
  19. Ivanov, A. B., Fedorenko, V. F., Tarkivsky, V. E., & Petukhov, D. A. (2021). Rational use of energy potential and reduction of the negative impact on the soil of agricultural tractor propellers using instrumental control of slipping. IOP Conference Series: Earth and Environmental Science, 808(1), 12019. https://doi.org/10.1088/1755-1315/808/1/012019
  20. Jensen, T. A., Antille, D. L., & Tullberg, J. N. (2025). Improving on-farm energy use efficiency by optimizing machinery operations and management: A review. Agricultural Research, 14(1), 15-33. https://doi.org/10.1007/s40003-024-00824-5
  21. Johansen, C., Haque, M. E., Bell, R. W., Thierfelder, C., & Esdaile, R. J. (2012). Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems. Field Crops Research, 132, 18-32. https://doi.org/10.1016/j.fcr.2011.11.026
  22. Karparvarfard, S. H., & Rahmanian-Koushkaki, H. (2015). Development of a fuel consumption equation: Test case for a tractor chisel-ploughing in a clay loam soil. Biosystems Engineering, 130, 23-33. https://doi.org/10.1016/j.biosystemseng.2014.11.015
  23. Khodabakhshi, A., Kalantari, D., & Mousavi, S. R. (2013). Effect of design parameters of rotary tillers on unevenness of the bottom of the furrows.
  24. Lacour, S., Burgun, C., Perilhon, C., Descombes, G., & Doyen, V. (2014). A model to assess tractor operational efficiency from bench test data. Journal of Terramechanics, 54, 1-18. https://doi.org/10.1016/j.jterra.2014.04.001
  25. Liu, Q., Yu, R., Suo, H., Cai, Y., Chen, L., & Jiang, H. (2025). Autonomous Driving in Agricultural Machinery: Advancing the Frontier of Precision Agriculture. Actuators, 14(9), 464. https://doi.org/10.3390/act14090464
  26. Liu, R., Zhang, P., Wang, X., Chen, Y., & Shen, Z. (2013). Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agricultural Water Management, 117, 9-18. https://doi.org/10.1016/j.agwat.2012.10.018
  27. Man, Z., Yuhan, J. I., Shichao, L. I., Ruyue, C. A. O., Hongzhen, X. U., & Zhenqian, Z. (2020). Research progress of agricultural machinery navigation technology. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 51(4).
  28. Marambanyika, T. (2015). An analysis of the impacts of human activities and management strategies on wetland processes in southern Zimbabwe. University of KwaZulu-Natal, Pietermaritzburg.
  29. Md-Tahir, H., Zhang, J., Xia, J., Zhou, Y., Zhou, H., Du, J., Sultan, M., & Mamona, H. (2021). Experimental investigation of traction power transfer indices of farm-tractors for efficient energy utilization in soil tillage and cultivation operations. Agronomy, 11(1), 168. https://doi.org/10.3390/agronomy11010168
  30. Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of machine learning techniques in agricultural crop production: a review paper. Indian Journal of Science and Technology, 9(38), 1- https://doi.org/10.17485/ijst/2016/v9i38/95032
  31. Moeenifar, A. M., Kalantari, D., & Seyedi, S. R. M. (2013). Application of dimensional analysis in determination of traction force acting on a narrowblade. International Journal of Agriculture and Crop Sciences, 5(9), 1034.
  32. Moitzi, G., Wagentristl, H., Refenner, K., Weingartmann, H., Piringer, G., Boxberger, J., & Gronauer, A. (2014). Effects of working depth and wheel slip on fuel consumption of selected tillage implements. Agricultural Engineering International: CIGR Journal, 16(1), 182-190.
  33. Olaoye, J. O., & Rotimi, A. O. (2010). Measurement of agricultural mechanization index and analysis of agricultural productivity of farm settlements in Southwest Nigeria. Agricultural Engineering International: CIGR Journal, 12(1).
  34. Ovchinnikov, A. S., Mezhevova, A. S., Novikov, A. E., Fomin, S. D., Pleskachev, Y. N., Borisenko, I. B., Zvolinsky, V. P., Tyutyuma, N. V, & Vorontsova, E. S. (2017). Energy and agrotechnical indicators in the testing of machine-tractor units with subsoiler. ARPN Journal of Engineering and Applied Sciences, 12(24), 7150-7160.
  35. Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), 5488. https://doi.org/10.3390/su12135488
  36. Pedersen, S. M., & Lind, K. M. (2017). Precision agriculture–from mapping to site-specific application. Precision Agriculture: Technology and Economic Perspectives, 1-20. https://doi.org/10.1007/978-3-319-68715-5_1
  37. Rahman, M. E., Bin Halmi, M. I. E., Bin Abd Samad, M. Y., Uddin, M. K., Mahmud, K., Abd Shukor, M. Y., Sheikh Abdullah, S. R., & Shamsuzzaman, S. M. (2020). Design, operation and optimization of constructed wetland for removal of pollutant. International Journal of Environmental Research and Public Health, 17(22), 8339. https://doi.org/10.3390/ijerph17228339
  38. Salam, R. H., Fikry, M. Y., & Rizali, M. (2024). Two-Wheel Tractor Performance Test With Variations Of Soil Trilling Patterns In Rice Land, East Lombok. Ecobios Journal Of Environmental Science, 1(1), 11-18. https://doi.org/10.71024/ecobios/2024/v1i1/8
  39. Santoso, D., Murdianto, D., Egra, S., Wahyuni, E., Murtilaksono, A., Tahcfulloh, S., & Sulistyo, A. (2025). Bibliometric analysis of oil palm pre-harvest machinery. Revista Brasileira de Engenharia Agrícola e Ambiental, 29(5), e287540. https://doi.org/10.1590/1807-1929/agriambi.v29n5e287540
  40. Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5), 1485. https://doi.org/10.3390/su11051485
  41. Singh, C., & Nath, R. (2020). Farming system and sustainable agriculture: Agricultural reform. Sgoc Publication.
  42. Slater, A. (2021). Fossil Fuels, Fossil Waters: Aquifers, Pipelines, and Indigenous Water Rights. Saturation. An Elemental Politics. Durham/London: Duke University Press. https://doi.org/10.1215/9781478013044-004
  43. Soylu, S., & Çarman, K. (2020). Automatic Control of Wheel Slip in Soil Tillage. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 848-858. https://doi.org/10.28948/ngumuh.722088
  44. Šumanovac, L., Jug, D., Jug, I., Japundžić-Palenkić, B., Mirosavljević, K., Popijač, M., & Benković-Lačić, T. (2021). Influence of aggregated tillage implements on fuel consumption and wheel slippage. Tehnički Vjesnik, 28(3), 956-962. https://doi.org/10.17559/TV-20201130162613
  45. Tabriz, S. S., Awal, M. A., Hossen, M. S., Ali, M. R., & Hossain, M. A. (2021). Development and Performance Evaluation of a Two-Wheel Tractor Mounted Conservation Tillage Trencher for Sugarcane. https://doi.org/10.20944/preprints202107.0194.v1
  46. Tahcfulloh, S., Wahyuni, E., Santoso, D., & Anam, A. S. (2024). Radiowave Pathloss Modeling Using Polynomial Methods for Wet and Dry Land Adan Rice Agriculture. 2024 11th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 379-384. https://doi.org/10.1109/EECSI63442.2024.10776287
  47. Tayel, M. Y., Shaaban, S. M., & Mansour, H. A. (2015). Effect of plowing conditions on the tractor wheel slippage and fuel consumption in sandy soil. International Journal of ChemTech Research, 8(12), 151-159.
  48. Viana, C. M., Freire, D., Abrantes, P., Rocha, J., & Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of the Total Environment, 806, 150718. https://doi.org/10.1016/j.scitotenv.2021.150718
  49. Wahyuni, E., Sutrisno, A., Santoso, D., & Egra, S. (2023). Smallholding farmers wellbeing in ecosystem services area of high food provider in border area of Indonesia. https://doi.org/10.31328/jsed.v6i2.4838
  50. Zhang, C., Li, J., Li, C., Lin, P., Shi, L., & Xiao, B. (2025). Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques. Agriculture, 15(18), 1943. https://doi.org/10.3390/agriculture15181943
CAPTCHA Image