1. Brereton, R. G., and G. R. Lloyd. 2010. Support Vector Machines for classification and regression. Analyst Journal 135: 230-267.
2. Chavez, P. S. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote sensing of environment 24 (3): 459-479.
3. Cheret, V., and J. Denux. 2011. Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GIScience and Remote Sensing 48: 171-194.
4. Deng, F., J. M. Chen, S. Plummer, M. Chen, and J. Pisek. 2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 44 (8): 2219.
5. Durbha, S. S., R. L. King, and N. H. Younan. 2007. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sensing of Environment 107 (1-2): 348-361.
6. Feng, M., C. Huang, S. Channan, E. F. Vermote, J. G. Masek, and J. R. Townshend. 2012. Quality assessment of Landsat surface reflectance products using MODIS data. Computers & Geosciences 38 (1): 9-22.
7. Gavier-Pizarroa, G. I., T. Kuemmerle, L. E. Hoyos, S. I. Stewart, C. D. Huebner, N. S. Keuler, and V. C. Radelof. 2012. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM + satellite data and Support Vector Machines in Cordoba, Argentina. Remote Sensing of Environment 122: 134-145.
8. Hadjimitsis, D. G., G. Papadavid, A. Agapiou, K. Themistocleous, M. G. Hadjimitsis, and A. Retalis. 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Natural Hazards and Earth System Sciences 10 (1): 89-95.
9. Hong, S. H., J. M. Hendrickx, and B. Borchers. 2009. Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale. Hydrology 370 (1): 122-138.
10. Im, J., Z. Lu, J. Rhee, and L. J. Quackenbush. 2012. Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multisensor data. Remote Sensing of Environment 117: 102-113.
11. Ke, Y., J. Im, J. Lee, H. Gong, and Y. Ryu. 2015. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations, Remote Sensing of Environment 164: 298-313.
12. Kitchen, N. R., K. A. Sudduth, S. T. Drummond, P. C. Scharf, H. L. Palm, D. F. Roberts, and E. D. Vories. 2010. Ground-based canopy reflectance sensing for variable-rate nitrogen corn fertilization. Agronomy 102: 71-84.
13. Li, P., L. Jiang, and Z. Feng. 2014. Cross-comparison of vegetation indices derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors. Remote Sensing 6: 310-329.
14. Maiersperger, T. K., P. L. Scaramuzza, L. Leigh, S. Shrestha, K. P. Gallo, and C. B. Jenkerson 2013. Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data. Remote Sensing of Environment 136: 1-13.
15. Meng, Q., W. Cooke, and J. Rodgers. 2013. Derivation of 16-day time-series NDVI data for environmental studies using a data assimilation approach. GIScience and Remote Sensing 50: 500-514.
16. MohammadZamani, D., A. Taghavi, M. Gholami-parshokouhi, and J. Massah. 2014. Design, implementation and evaluation of a monitoring system of potato yield. Journal of Agricultural Machinery 4 (1): 50-56. (In Farsi).
17. Olfs, H. W. 2009. Improved precision of arable nitrogen applications: requirements, technologies and implementation. The International FertiliserSociety, Proceeding 662: 35.
18. Pastor-Guzman, J., P. M. Atkinson, J. Dash, and R. Rioja-Nieto. 2015. Spatotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8. Remote Sensing 7: 14530-14558.
19. Raun, W. R., J. B. Solie, G. V. Johnson, M. L. Stone, R. W. Mullen, K. W. Freeman, W. E. Thomason, and E.V. Lukina. 2002. Improving nitrogen use efficiency in cerealgrain production with optical sensing and variable rate application. Agronomy 94: 815-820.
20. Roberts, D. F., V. I. Adamchuk, J. F. Shanahan, R. B. Ferguson, and J. S. Schepers. 2009. Optimization of crop canopy sensor placement for measuring nitrogen statusin corn. Agronomy 101: 140-149.
21. Rostami, M. A., M. H. Raofat, A. Jafari, M. Loghavi, M. Kasraee, and M. J. Nazem-Alsadat. 2014. Monitoring of protection tillage and intensity of tillage using satellite and terrestrial images. Journal of Agricultural Machinery 4 (2): 255-265. (In Farsi).
22. Samborski, M., D. Gozdowski, M. Stepie´na, O. S. Walshc, and E. Leszczy´nska. 2016. On-farm evaluation of an active optical sensor performance forvariable nitrogen application in winter wheatStanisław. Agronomy 74: 56-67.
23. Schepers, J. S., and J. F. Shanahan. 2009. Managing nitrogen with active sensors. 13th Annual Symposium on Precision Agriculture in Australia.
24. Sharma, L. K., H. Bu, A. Denton, and D. W. Franzen. 2015. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota USA. Sensors 15: 27832-27853.
25. Stark, J. C., and B. D. Brown. 2003. Nutrient Management. In L.D. Robertson and J.C. Stark (Eds) Idaho Spring Barley Production Guide. pp. 22-26.
26. Teillet, P., and X. Ren. 2008. Spectral band difference effects on vegetation infices derived from multiple satellite sensor data. Canadian Journal of Remote Sensing 34: 159-173.
27. Tremblay, N., E. Fallon, and N. Ziadi. 2011. Sensing of crop nitrogen status: Opportunities, tools, limitations, and supporting information requirements. Horticulture Technology 21: 274-281.
28. Yuan, F., C. Wang, and M. Mitchell. 2014. Spatial patterns of land surface phenology relative to monthly climate variations: US Great Plains. GIScience and Remote Sensing 51: 30-50.
ارسال نظر در مورد این مقاله