با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

در این تحقیق از تصاویر میکروسکوپ الکترونی روبشی (SEM) برای بررسی رفتار میکرومکانیکی بافت سیب‌زمینی رقم سانته در مدت زمان انبارداری 16 هفته، با سطوح انرژی ضربه شاهد (صفر)، سطح 1 (0/002±0/031 ژول) و سطح (0/02±0/320 ژول) و با شعاع انحنای محل ضربـه (35 و 45 میلی‌متر) استفاده شد. پس از گذشت مدت انبـارداری در فاصله‌های 2 هفته‌ای، بـرای هر کدام از غده‌های سیب‌زمینی آزمون ضربه انجام شد و سپس متغیرهای محتوای رطوبت، فشار ترگر سلول، سطح مقطع سلول، محیط سلول و آسیب ضربه تعیین گردید. محافظت بسیار خوب و قابل قبول از ریزساختار سیب‌زمینی طی فرآیند آماده‌سازی نمونه جهت مشاهده در SEM به دلیل استفاده از هگزا متیل دی سیلازان (HMDS) برای خشک کردن شیمیایی بافت یک دستاورد مهم در پژوهش حاضر می‌باشد. نتایج نشان داد که با گذشت زمان انبارداری یک روند کاهشی معنی‌دار در سطح احتمال 5 درصد در محتوای رطوبت و فشار ترگر سلول وجود دارد. همچنین سطح مقطع و محیط سلول طی مدت انبارداری به‌طور معنی‌داری کاهش یافت (سطح احتمال 5 درصد). به‌طور کلی افزایش شدت ضربه باعث کاهش معنی‌دار محتوای رطوبت، فشار ترگر سلول، سطح مقطع و محیط سلول در سطح احتمال 5 درصد شد. همچنین اثر متقابل سه‌گانه زمان انبارداری، شدت ضربه و شعاع انحنای محل ضربه بر آسیب ضربه ایجاد شده در بافت سیب‌زمینی در سطح احتمال 5 درصد معنی‌دار است. بررسی‌ها نشان داد با افزایش زمان انبارداری، ضربه شدیدتر و شعاع انحنای کوچک‌تر در محل برخورد، حجم آسیب وارده به‌طور معنی‌داری بزرگ‌تر خواهد بود.

کلیدواژه‌ها

1. Abedi, Gh., and E. Ahmadi. 2014. Bruise susceptibilities of golden delicious apples as affected by mechanical impact and fruit properties. Journal of Agricultural Science 152: 439-447.
2. Afshari, H., S. Minaei, M. Almasi, and P. Abdolmaleki. 2008. Evaluation of potato damage under dynamic loading. Quarterly of Food Science and Technology 5 (2): 69-76. (In Farsi).
3. Ahmadi, E., and H. Barikloo. 2016. Mechanical property evaluation of apricot fruits under quasi-static and dynamic loading. Journal of Agricultural Machinery 6 (1): 139-152. (In Farsi).
4. Alvarez, M. D., D. E. J. Saunders, and J. F. V. Vincent. 2000. Effect of turgor pressure on the cutting energy of stored potato tissue. European Food Research and Technology 210: 331-339.
5. Al-Weshahy, A., M. El-Nokety, M. Bakhete, and V. Rao. 2013. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International 50: 507-512.
6. Asmamaw, Y., T. Tekalign, and T. S. Workneh. 2010. Specific gravity, dry matter concentration, pH, and crisp-making potential of ethiopian potato (Solanum tuberosum L.) cultivars as influenced by growing environment and length of storage under ambient conditions. Potato Research 53: 95-109.
7. Baheri, M. 1997. Development of a method for prediction of potato mechanical damage in the chain of mechanized potato production, Ph.D. Thesis Nr. 342, Faculty of Agricultural and Applied Biological Sciences, KU Leuven.
8. Bajema, R. W., and G. M. Hyde. 1998. Instrumented pendulum for impact characterization of whole fruit and vegetable specimens. Transactions of the American Society Agricultural Engineers 41 (5): 1399-1405.
9. Baritelle, A., and G. Hyde. 2001. Commodity conditioning to reduce impact bruising. Postharvest Biology and Technology 21: 331-339.
10. Bentini, M., C. Caprara, and R. Martelli. 2006. Harvesting damage to potato tubers by analysis of impacts recorded with an instrumented sphere. Biosystems Engineering 94 (1): 75-85.
11. Bentini, M., C. Caprara, and R. Martelli. 2009. Physico-mechanical properties of potato tubers during cold storage. Biosystems Engineering 104: 25-32.
12. Berger, L. R. R., N. P. Stamford, L. G. Willadino, D. Laranjeira, M. A. B. De Lima, S. M. M. Malheiros, W. J. De Oliveira, and T. C. M. Stamford. 2016. Cowpea resistance induced against fusariumoxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from cunninghamellaelegans. Biological Control 92: 45-54.
13. Blahovec, J. 2005. Impact induced mechanical damage of Agria potato tubers. Research in Agricultural Engineering 51 (2): 39-43.
14. Brook, R. C. 1993. Impact testing of potato harvesting equipment. American Potato Journal 70: 243-256.
15. Brusewitz, G. H., R. E. Pitt, and Q. Gao. 1989. Effects of storage time and static preloading on the rheology of potato tissue. Journal of Texture Studies 20 (3): 267-284.
16. Danila, D. M. 2015. Assessing the potato impact response using a pendulum controlled and designed by computer. Bulletin of the Transilvania University of Braşov. Series II: Forestry, Wood Industry, and Agricultural Food Engineering 8 (57): 65-70.
17. FAOSTAT. 2014. www.fao.org/faostat/en.
18. Gancarz, M., and K. Konstankiewicz. 2007. Changes of cellular structure of potato tuber parenchyma tissues during storage. Research in Agricultural Engineering 53 (2): 75-78.
19. Gibson, L. J. 2012. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface 9 (76): 1-18.
20. Haman, J., K. Konstankiewicz, and A. Zdunek. 2000. Influence of water potential on the failure of potato tissue. International Agrophysics 14: 181-186.
21. Kaack, K., L. Kaaber, E. Larsen, and A. K. Thybo. 2002. Microstructural and chemical investigation of subsurface hardened potatoes (Solanum tuberosum L.). Potato Research 45: 9-15.
22. Karcz, J., T. Bernas, A. Nowak, E. Talik, and A. Woznica. 2012. Application of lyophilization to prepare the nitrifying bacterial biofilm for imaging with scanning electron microscopy. Scanning 34: 26-36.
23. Konstankiewicz, K., K. Pawlak, and A. Zdunek. 2001a. Influence of structural parameters of potato tuber cells on their mechanical properties. International Agrophysics 15: 243-246.
24. Konstankiewicz, K., K. Pawlak, and A. Zdunek. 2001b. Quantitative method for determining cell structural parameters of plant tissues. International Agrophysics 15: 161-164.
25. Konstankiewicz, K., and A. Zdunek. 2001. Influence of turgor and cell size on the cracking of potato tissue. International Agrophysics 15: 27-30.
26. Laza, M., M. G. Scanlon, and G. Mazza. 2001. The effect of tuber pre-heating temperature and storage time on the mechanical properties of potatoes. Food Research International 34: 659-667.
27. Lin, T. T., and R. E. Pitt. 1986. Rheology of apple and potato tissue as affected by cell turgor pressure. Journal of Texture Studies 17: 291-313.
28. Lu, F., Y. Ishikawa, H. Kitazawa, and T. Satake. 2010. Measurement of impact pressure and bruising of apple fruit using pressure-sensitive film technique. Journal of Food Engineering 96: 614-620.
29. Mahto, R. and M. Das. 2014. Effect of gamma irradiation on the physico-mechanical and chemical properties of potato (Solanum tuberosum L.), cv. ‘kufriSindhuri’, in non-refrigerated storage conditions. Postharvest Biology and Technology 92: 37-45.
30. Maricle, B. R., N. K. Koteyeva, E. V. Voznesenskaya, J. R. Thomasson, and G. E. Edwards. 2009. Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the c4 genus spartina (poaceae). New Phytologist 184: 216-233.
31. Mohsenin, N. N. 1996. Physical characteristics: Physical properties of plant and animal materials. New York, Gordon and Breach Science Publishers.
32. Molema, G. J., B. R. Verwijs, J. V. Van Den Berg, and H. Breteler. 1997a. Effect of repetitive impacts on subcutaneous tissue discoloration in potato tubers. Netherlands Journal of Agricultural Science 45: 187-200.
33. Molema, G. J., J. J. Klooster, B. R. Verwijs, M. M. W. B. Hendriks, and H. Breteler. 1997b. Effect of impact body shape on subcutaneous tissue discoloration in potato tubers. Netherlands Journal of Agricultural Science 45: 407-421.
34. Molema, G. J., P. C. Struik, B. R. Verwijs, A. Bouman, and J. J. Klooster. 2000. Impact measured by an instrumented sphere. Potato Research Journal 43: 225- 238.
35. Noble, R. 1985. The relationship between impact and internal bruising in potato tubers. Journal of Agricultural Engineering Research 32: 111-121.
36. Pathan, A. K., J. Bond, and R. E. Gaskin. 2010. Sample preparation for SEM of plant surfaces. Materials Today 12: 32-43.
37. Parker, C. C., M. L. Parker, A. C. Smith, and K. W. Waldron. 2001. Pectin distribution at the surface of potato parenchyma cells in relation to cell-cell adhesion. Journal of Agricultural and Food Chemistry 49: 4364-4371.
38. Praeger, U., W. B. Herppich, C. Konig, B. Herold, and M. Geyer. 2009. Changes of water status, elastic properties and black spot incidence during storage of potato tubers. Journal of Applied Botany and Food Quality 83: 1-8.
39. Praeger, U., J. Surdilovic, I. Truppel, B. Herold, and M. Geyer. 2013. Comparison of electronic fruits for impact detection on a laboratory scale. Sensors 13: 7140-7155.
40. Pieczywek, P. M., A. Zdunek, and M. Umeda. 2011. Study on parameterisation of plant tissue microstructure by confocal microscopy for finite elements modeling. Computers and Electronics in Agriculture 78: 98-105.
41. Scanlon, M. G., C. H. Pang, and C. G. Biliaderis. 1996. The effect of osmotic adjustment on the mechanical properties of potato parenchyma. Food Research International 29 (5-6): 481-488.
42. Skrobacki, A., J. L. Halderson, J. J. Pavek, and D. L. Corsini. 1989. Determination potato tuber resistance to impact damage. American Potato Journal 66: 401-416.
43. Singh, N., L. Kaur, R. Ezekie, and H. S. Guraya. 2005. Microstructural, cooking and texture characteristics of potato (Solanum tuberosum L.) tubers in relation to physicochemical and functional properties of their flours. Journal of the Science of Food and Agriculture 85: 1275-1284.
44. Singh, F., V. K. Katiyar, and B. P. Singh. 2014. Analytical study of turgor pressure in apple and potato tissues. Postharvest Biology and Technology 89: 44-48.
45. Strehmel, N., U. Praeger, C. Konig, I. Fehrle, A. Erban, M. Geyer, J. Kopka, and J. T. Van Dongen. 2010. Time course effects on primary metabolism of potato (Solanum tuberosum) tuber tissue after mechanical impact. Postharvest Biology and Technology 56: 109-116.
46. Talbot, M. J., and R. G. White. 2013. Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9 (36): 1-7.
47. Uwins, P. J. R., M. Murray, and R. J. Gould. 1993. Effects of four different processing techniques on the microstructure of potatoes: comparison with fresh samples in the ESEM. Microscopy Research and Techniue 25: 412-418.
48. Van Zeebroeck, M., E. Tijskens, P. Van Liedekerke, V. Deli, J. De Baerdemaeker, and H. Roman. 2003. Determination of the dynamical behaviour of biological materials during impact using a pendulum device. Journal of Sound and Vibration 266: 465-480.
49. Van Canneyt, T., E. Tijskens, H. Ramon, R. Verschoore, and B. Sonck. 2003. Characterisation of a potato-shaped instrumented device. Biosystems Engineering 86 (3): 275-285.
CAPTCHA Image