با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

آسیب‌های مکانیکی ضربه ناشی از برداشت مکانیزه، انتقال و یا فرآوری محصولات کشاورزی تازه هر ساله باعث کاهش چشم‌گیری از درآمد تولید مواد غذایی می‌شود. میوه زیتون هم مانند بسیاری دیگر از میوه‌ها به ضربه بسیار حساس می‌باشد که می‌تواند منجر به آسیب مکانیکی (کوفتگی) گردد و باعث کاهش کیفیت این محصول شود. در این تحقیق، شکل کوفتگی در رقم روغنی، بیضوی و کشیده و در رقم کنسروالیا، کروی و متمرکز بود که علت آن می‌تواند به علت تفاوت در میزان کرویت و در نتیجه تفاوت در سطح برخورد در هنگام ضربه باشد. تأثیر رقم، جرم و ارتفاع سقوط بر مساحت و حجم کوفتگی با استفاده از آزمایش سقوط آزاد در دو رقم زیتون کنسروالیا و روغنی مورد بررسی قرار گرفت. نتایج نشان داد که تأثیر عوامل آزمایش بر روی حجم و سطح کوفتگی معنی‌دار بود و با افزایش ارتفاع و جرم حجم و سطح کوفتگی افزایش یافت. رقم روغنی به‌طور معنی‌داری سطح و حجم کوفتگی بالاتری نسبت به رقم کنسروالیا داشت. تأثیر نیرو و انرژی ضربه بر حجم کوفتگی نیز معنی‌دار شد و با افزایش نیرو و انرژی میزان حجم کوفتگی برای دو رقم مورد آزمایش افزایش یافت. سطح انرژی و نیرو در رقم کنسروالیا به علت جرم بالاتر این رقم، بالاتر بود در حالی‌که به علت تفاوت‌های ظاهری دو رقم و کمتر بودن کرویت و ضخامت گوشت نسبت به هسته در رقم روغنی حجم کوفتگی بیشتر بود.

کلیدواژه‌ها

1. Abedi, M., and E. Ahmadi. 2014. Bruise susceptibilities of Golden Delicious apples as affected by mechanical impact and fruit properties. The Journal of Agricultural Science 152 (3): 439-447.
2. Afshari, H., S. Minaeei, M. Almasi, and P. Abdolmaleki. 2006. The assessment of potato damage under dynamic loading. Journal of science and food industry 5 (2): 69-79. (In Farsi).
3. Asgarian Najafabadi, S. A., H. R. Ghasemzadeh, and M. Moghadam. 2013. Laboratory study of two cultivars of strawberry fruit (Fragaria x ananassa) to bruising. Journal of Agricultural Machinery 3 (1): 41-47. (In Farsi).
4. Blahovec, J., and F. Paprstein. 2005. Susceptibility of pear varieties to bruising. Postharvest Biology and Technology 38 (3): 231-238.
5. Bollen, A. F., H. X. Nguyen, and B. T. De la Rue. 1999. Comparison of methods for estimating the bruise volume of apples. Journal of Agricultural Engineering Research 74 (4): 325-330.
6. Casanova, L., M. Corell, M. P. Suarez, P. Rallo, M. J. Martin-Palomo, and M. R. Jimenez. 2017. Bruising susceptibility of Manzanilla de Sevilla table olive cultivar under Regulated Deficit Irrigation. Agricultural Water Management 189: 1-4.
7. Food and Agriculture Organization of the United Nations (FAO). 2014. Food Supply - Crops Primary Equivalent. Available at: http://www.fao.org/faostat/en/#data/CC.
8. Ghanbarian, D., M. Shirvani, M. Ghasemi Varnamkhasty, and H. Golestanian. 2015. The effects of the dropping height and contact surface on bruising of export apples. Journal of Agricultural Machinery 5 (1): 122-133. (In Farsi).
9. Idah, P. A., E. S. A. Ajisegiri, and M. G. Yisa. 2007. An assessment of impact damage to fresh tomato fruits. AU Journal of Technology 10 (4): 271-275.
10. Jadidi, Z. 2014. Evaluation of the performance and fruit features of some olive cultivars in Isfahan. Faculty of agriculture. Isfahan University of Technology.
11. Jimenez-Jimenez, F., S. Castro-Garcia, G. L. Blanco-Roldan, J. Agüera-Vega, and J. A. Gil-Ribes. 2012. Non-destructive determination of impact bruising on table olives using Vis–NIR spectroscopy. Biosystems Engineering 113: 371-378.
12. Jimenez-Jimenez, F., S. Castro-Garcia, G. L. Blanco-Roldan, L. Ferguson, U. A. Rosa, and J. A. Gil-Ribes. 2013. Table olive cultivar susceptibility to impact bruising. Postharvest Biology and Technology. 86: 100-106.
13. Jimenez, M. R., P. Rallo, H. F. Rapoport, and M. P. Suarez. 2016. Distribution and timing of cell damage associated with olive fruit bruising and its use in analyzing susceptibility. Postharvest Biology and Technology 111: 117-125.
14. Lewis, R., A. Yoxall, L. Canty, and E. R. Romo. 2007. Development of engineering design tools to help reduce apple bruising. Journal of Food Engineering 83: 356-365.
15. Mireei, S. A., M. Sadeghi, A. Heidari, and A. Hemmat. 2015. On-line firmness sensing of dates using a non-destructive impact testing device. Biosystems Engineering 129: 288-297.
16. Mohammad Shafie, M. A. Rajabipour, H. Mobli, and M. Khanali. 2016. The effect of dropping impact on bruising pomegranate fruit. Journal of Agricultural Machinery 6 (1): 176-187. (In Farsi).
17. Mohsenin, N. N. 1986. Physical properties of plant and animal materials. Gordon and Breach Science Publishers. New York.
18. Opara, L. U. 2007. Bruise susceptibilities of ‘Gala’ apples as affected by orchard management practices and harvest date. Postharvest Biology and Technology 43: 47-54.
19. Ortiz, C., J. Blasco, S. Balasch, and A. Torregrosa. 2011. Shock absorbing surfaces for collecting fruit during the mechanical harvesting of citrus. Biosystems Engineering 110: 2-9.
20. Praeger, U., J. Surdilovic, I. Truppel, B. Herold, and M. Geyer. 2013. Comparison of electronic fruits for impact detection on a laboratory scale. Sensors 13: 7140-7155.
21. Saracoglu, T., N. Ucer, and C. Ozarslan. 2011. Engineering properties and susceptibility to bruising damage of table olive (Olea europaea) fruit. International Journal of Agriculture and Biology 13 (5): 801-805.
22. Schulte N. L., E. J. Timm, and G. K. Brown. 1994. ‘Redhaven’ peach impact damage thresholds. Horticulture Science 29 (9): 1052-1055.
23. Segovia-Bravo, K. A., M. Jaren-Galan, P. Garcia-Garcia, and A. Garrido-Fernandez. 2009. Browning reactions in olives: mechanism and polyphenols involved. Food Chemistry 114 (4): 1380-1385.
24. Shoa, P., and A. Hemmat. 2014. Assessment of two olive cultivars sensitivity to impact damage. 8th national congress of agricultural machinery and mechanization engineering. Mashhad, Iran. (In Farsi).
25. Van linden, V., N. Scheerlinck, M. Desmet, and J. De Baerdemaeker. 2006. Factors that affect tomato bruise development as a result of mechanical impact. Postharvest Biology and Technology 42: 260-270.
26. Van Zeebroeck, M., H. Ramon, J. De Baerdemaeker, B. Nicolaï, and E. Tijskens. 2007. Impact damage of apples during transport and handling. Postharvest Biology and Technology 45: 157-167.
27. Zarifneshat, S., H. R. Ghassemzadeh, M. Sadeghi, M. H. Abbaspour-Fard, E. Ahmadi, A. Javadi, and M. T. Shervani-Tabar. 2010. Effect of impact level and fruit properties on Golden Delicious apple bruising. American Journal of Agricultural and Biological Sciences 5: 114-121.
28. Zhang, Sh., X. Wu, Sh. Zhang, Q. Cheng, and Z. Tan. 2017. An effective method to inspect and classify the bruising degree of apples based on the optical properties. Postharvest Biology and Technology 127: 44-52.
CAPTCHA Image