با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

امروزه خواص دی‌الکتریک محصولات غذایی و بیولوژیکی به پارامتری ارزشمند در مهندسی مواد غذایی و فناوری تبدیل شده است که محدوده طیفی فوق‌العاده‌ای از 6-10 تا 1012 هرتز را پوشش می‌دهد. در این تحقیق ابتدا تعداد 27 گلابی کاملاً سالم به‌وسیله آزمون غیرمخرب سی‌تی اسکن انتخاب و سپس تحت بارگذاری شبه‌استاتیکی و دینامیکی قرار گرفتند و انبارداری 10 روزه به‌منظور بررسی میزان خواص فیزیولوژیکی و ارتباط آن با تغییرات ضریب دی‌الکتریک انتخاب شد. در پایان دوره انبارداری مقدار ضریب دی‌الکتریک میوه‌ها و پس از آن مقدار خواص فیزیولوژیکی آن‌ها اندازه‌گیری شد. اندازه‌گیری‌ها در فاصله صفحات خازن 11 سانتی‌متری، ولتاژ ورودی 10 ولت، فرکانس ولتاژ ورودی 60 کیلوهرتز انجام شد. طبق نتایج حاصل شده حالت بارگذاری دینامیکی 400 نیوتنی دارای بیشترین ضریب‌دی‌الکتریک در بین همه حالت‌های بارگذاری با مقدار 5.2989 و به دنبال آن این حالت بارگذاری دارای کمترین مقادیر خواص فیزیولوژیکی در بین تمام حالت‌های بارگذاری با مقادیر آنتی‌اکسیدان 33.925 درصد، محتوای فنلی 14.523 و ویتامین C 5.7 میلی‌گرم بر 100 گرم و سفتی 5.5333 گرم بود. نتایج آزمایش‌ها نشان دادند که با افزایش مقدار نیروی بارگذاری بر روی میوه گلابی، همه مقادیر خواص فیزیولوژیکی مورد نظر در تمام موارد بارگذاری کاهش یافته و در نهایت، مقدار ضریب دی‌الکتریک محصول افزایش می‌یابد.

کلیدواژه‌ها

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Altisent, M. R. 1991. Damage Mechanisms in the Handling of Fruits. Progress in agricultural physics and engineering. John Matthew (Ed). Common Wealth Agricultural Bureaux (CAB) International, Willingford, UK. 231-257.
2. Amodio, M. L., G. Colelli, J. K. Hasey, and A. A. Kader. 2007. A comparative study of composition and postharvest performance of organically and conventionally grown kiwifruits. Journal of the Science of Food and Agriculture 8: 1228-1236. https://doi.org/10.1002/jsfa.
3. Arendse, E., O. A. Fawole, L. S. Magwaza, and U. L. Opara. 2016. Non-destructive characterization and volume estimation of pomegranate fruit external and internal morphological fractions using X-ray computed tomography. Journal of Food Engineering 186: 42-49. https://doi.org/10.1016/j.jfoodeng.2016.04.011.
4. Barriga-Tellez, L. M., M. G. Garnica-Romo, J. I. Aranda-Sanchez, G. A. Correa, M. C. Bartolome-Camacho, and H. E. Martinez-Flores. 2011. Nondestructive tests for measuring the firmness of guava fruit stored and treated with methyl jasmonate and calcium chloride. International Journal of Food Science & Technology 46: 1310-1315. https://doi.org/10.1111/j.1365-2621.2011.02633.x
5. Fito, P., M. Castro-Giraldez, P. J. Fito, and C. Chenoll. 2010. Development of a dielectric spectroscopy technique for the determination of apple (Granny Smith) maturity. Innovative Food Science & Emerging Technologies 11: 749-754. https://doi.org/10.1016/j.ifset.2010.08.002.
6. Funebo, T., and T. Ohlsson. 1999. Dielectric properties of fruits and vegetables as a function of temperature and moisture content. Journal of Microwave Power and Electromagnetic Energy 34: 42-54.
7. Guo, W. chuan, S. O. Nelson, S. Trabelsi, and S. J. Kays. 2007. 10-1800-MHz dielectric properties of fresh apples during storage. Journal of Food Engineering 83: 562-569. https://doi.org/10.1016/j.jfoodeng.2007.04.009.
8. Jahanbakhshi, A., R. Yeganeh, G. Shahgoli. 2019. Determination of mechanical properties of banana fruit under quasi-static loading in pressure, bending, and shearing tests. International Journal of Fruit Science 1-9.
9. Jaramillo-Flores, M. E., L. Gonzalez-Cruz, M. Cornejo-Mazon, L. Dorantes-alvarez, G. F. Gutierrez-Lopez, and H. Hernandez-Sanchez. 2003. Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica). Food Science and Technology International 9: 271-278. https://doi.org/10.1177/108201303036093.
10. Khaled, D. El, N. Novas, J. A. Gazquez, R. M. Garcia, and F. Manzano-Agugliaro. 2015. Fruit and vegetable quality assessment via dielectric sensing. Sensors. 15: 15363-15397.
11. Khodamoradi, S., and E. Ahmadi. 2019. Effect of Chitosan Coating on Physical, Mechanical and Chemical Properties of Grapes During Storage. Journal Agriculture Machinery 9: 347-364. (In Farsi).
12. Krauss, S., W. H. Schnitzler, J. Grassmann, and M. Woitke. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Journal of Agricultural and Food Chemistry 54: 441-448.
13. Li, W. L., X. H. Li, X. Fan, Y. Tang, and J. Yun. 2012. Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2active packaging in comparison with low O2packaging. Food Science and Technology International 18: 197-205. https://doi.org/10.1177/1082013211415147.
14. Moretti, C. L., S. A. Sargent, D. J. Huber, A. G. Calbo, and R. Puschmann. 1998. Chemical composition and physical properties of pericarp, locule, and placental tissues of tomatoes with internal bruising. Journal of the American Society for Horticultural Science 123: 656-660.
15. Navgaran, K. Z., L. Naseri, and M. Esmaiili. 2014. Effect of packaging material containing nano-silver and silicate clay particles on postharvest. Journal of Food Researches 24: 89-102.
16. Razavi, M. S., A. Asghari, M. Azadbakh, and H. A. Shamsabadi. 2018. Analyzing the pear bruised volume after static loading by Magnetic Resonance Imaging (MRI). Scientia Horticulturae 229: 33-39. https://doi.org/10.1016/j.scienta.2017.10.011.
17. Sipahioglu, O., and S. A. Barringer. 2003. Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. Journal of Food Science 68: 234-239. https://doi.org/10.1111/j.1365-2621.2003.tb14145.x.
18. Soltani, M., R. Alimardani, and M. Omidi. 2010. Prediction of banana quality during ripening stage using capacitance sensing system. Australian Journal of Crop Science 4: 443-447.
19. Soltani, M., R. Alimardani, and M. Omidi. 2011. A Feasibility Study of Employing a Capacitance Based Method in Banana Ripeness Recognition. Iran Journal Biosystem Engineering
20. Tavarini, S., E. Degl’Innocenti, D. Remorini, R. Massai, and L. Guidi. 2008. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry 107: 282-288. https://doi.org/10.1016/j.foodchem.2007.08.015.
CAPTCHA Image