با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه شهرکرد، شهرکرد، ایران

3 گروه فناوری صنایع غذایی، پردیس ابوریحان، دانشگاه تهران، ایران

چکیده

روغن زیتون فرابکر همیشه مورد توجه و خواست استفاده‌کنندگان می‌باشد؛ از این‌رو در روغن‌های زیتونِ بکر و فرابکر، تقلب، با افزودن روغن‌های با ارزش غذایی و قیمت کمتر مثل کانولا، آفتابگردان، تفاله زیتون و غیره مشاهده می‌گردد. در این پژوهش با استفاده از فناوری ماشین بویایی روغن زیتون فرابکر، از نمونه‌های تقلبی تهیه شده با روغن‌های متداول در بازار و با هفت مدل طبقه‌بندی مختلف تشخیص داده شد. نمونه‌ها در شش دسته‌ی "خالص و 5، 10، 20، 35 و 50 درصد تقلب" و هر تیمار در هفت نمونه تهیه و آزمایش‌ها در هفت تکرار انجام گرفت. سامانه بویایی از هشت حسگر متفاوت تشکیل شده که برای هر کدام نمودار تغییر ولتاژ بر حسب زمان تهیه و از آن نمودار چهار ویژگی "کمینه، بیشینه، میانگین و اختلاف بیشینه و کمینه" در مدل‌های طبقه‌بندی استفاده گردید. به این ترتیب تعداد 32 ویژگی برای هشت حسگر استخراج و مورد تجزیه و تحلیل قرار گرفت. به جهت تاثیر دمای نمونه‌ها در خروجی سامانه، تمام آزمایش‌ها در دمای ثابت انجام گرفتند. طبقه‌بندی نتایج با چهار الگوریتم طبقه‌بندی "K-همسایگی نزدیک، ماشین بردار پشتیبان، شبکه عصبی مصنوعی و آدابوست" صورت پذیرفت. 70% داده‌ها برای آموزش و 30% برای آزمون استفاده گردید. از بین 32 ویژگی، ویژگی "کمینه مقدار خروجی سنسور TGS-822" بیشترین تاثیر را در دقت طبقه‌بندی داشتند. نتایج نشان داد روش طبقه‌بندی همسایگی نزدیک با بهترین دقت (89.89%) و پس از آن روش ماشین بردار پشتیبان (86.52%)  بیشترین دقت طبقه‌بندی را دارا بودند.

کلیدواژه‌ها

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Alavi Rafiee, S., R. Farhoosh, and M. Haddad Khodaparast. 2012. Physicochemical properties of Iranian commercial olive oils. Iranian Journal of Nutrition Sciences & Food Technology 7: 85-94. (In Farsi)
2. Aued-Pimentel, S., E. Takemoto, R. Antoniassi, and E. S. G. Badolato. 2006. Composition of tocopherols in sesame seed oil: an indicative of adulteration. Grasas y Aceites 57: 205-210.
3. Baeten, V., and R. Aparicio. 2000. Edible oils and fats authentication by Fourier transform Raman spectrometry. BASE.
4. Borràs, E., J. Ferre, R. Boque, M. Mestres, L. Aceña, and O. Busto. 2015. Data fusion methodologies for food and beverage authentication and quality assessment–A review. Analytica Chimica Acta 891: 1-14.
5. Dankowska, A., and W. Kowalewski. 2019. Comparison of different classification methods for analyzing fluorescence spectra to characterize type and freshness of olive oils. European Food Research and Technology 245: 745-752.
6. Estakhroueiyeh, H. R., and E. Rashedi. 2015. Detecting moldy bread using an e-nose and the KNN classifier. Pages 251-255. 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE): IEEE.
7. Fahim Danesh, M., and M. E. Bahrami. 2015. Evaluation of adulteration in sesame oil using Differential Scanning Calorimetry. Food Science and Technology 13: 81-89. (In Farsi)
8. Fayyaz, P., S. S. Mohtasebi, A. Jafari, and A. Masoudi. 2019. Development and Evaluation of an Electronic Nose System Based on MOS Sensors to Detect and to Distinguish Lemon Essential Oils. Journal of Agricultural Machinery 9. (In Farsi)
9. Garrido-Delgado, R., M. del Mar Dobao-Prieto, L. Arce, and M. Valcarcel. 2015. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chemistry 187: 572-579.
10. Ghasemi-Varnamkhasti, M., S. S. Mohtasebi, M. Siadat, H. Ahmadi, and S. H. Razavi. 2015. From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Engineering in Agriculture, Environment and Food 8: 44-51.
11. Haddi, Z., H. Alami, N. El Bari, M. Tounsi, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi. 2013. Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Research International 54: 1488-1498.
12. Hajinezhad, M., S. S. Mohtasebi, M. Ghasemi-varnamkhasti, and M. Aghbashlo. 2016. Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery 7: 439-450. (In Farsi)
13. Homapour, M., M. Ghavami, Z. Piravivanak, and E. Hosseini. 2016. Evaluation of Chemical Characteristics of Extra Virgin Olive Oils Extracted from Three Monovarieties of Mari, Arbequina and Koroneiki in Fadak and Gilvan Regions. Journal of Food Biosciences and Technology 6: 77-85.
14. Huo, Q.-G., X.-B. Jin, and H.-M. Zhang. 2012. Multi-label classification for Oil Authentication. Pages 711-714. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery: IEEE.
15. Jafari, A., A. Fazayeli, and M. R. Zarezadeh. 2014. Estimation of orange skin thickness based on visual texture coarseness. Biosystems Engineering 117: 73-82.
16. Korotčenkov, G. S. 2013. Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications. Conventional Approaches. Springer.
17. Lee, D.-S., B.-S. Noh, S.-Y. Bae, and K. Kim. 1998. Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta 358: 163-175.
18. Lee, D.-S., E.-S. Lee, H.-J. Kim, S.-O. Kim, and K. Kim. 2001. Reversed phase liquid chromatographic determination of triacylglycerol composition in sesame oils and the chemometric detection of adulteration. Analytica Chimica Acta 429: 321-330.
19. Maghsudi, S. 1999. Technology of olive and it's products Tehran: Iran Agriculture Science Press. (In Farsi)
20. Martı́n, Y. G., J. L. P. Pavon, B. M. Cordero, and C. G. A. Pinto. 1999. Classification of vegetable oils by linear discriminant analysis of electronic nose data. Analytica Chimica Acta 384: 83-94.
21. Mildner‐Szkudlarz, S., and H. H. Jeleń. 2010. Detection of olive oil adulteration with rapeseed and sunflower oils using mos electronic nose and SMPE‐MS. Journal of Food Quality 33: 21-41.
22. Naderi-Boldaji, M., M. Mokhtari, M. Ghasemi-Varnamkhasti, and M. Tohidi. 2019. Feasibility of using a cylindrical resonator sensor for adulteration detection in sesame oil. Innovative Food Technologies (JIFT).
23. Ok, S. 2017. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils. Grasas y Aceites 68: 173.
24. Oliveros, M. C. C., J. L. P. Pavon, C. G. A. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina. 2002. Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Analytica Chimica Acta 459: 219-228.
25. Ozen, B. F., and L. J. Mauer. 2002. Detection of hazelnut oil adulteration using FT-IR spectroscopy. Journal of Agricultural and Food Chemistry 50: 3898-3901.
26. Pashaei, A., and F. Shavakhi. 2017. Application of calorimeter for detection of adulteration of extra virgin olive oil mixed with aspersed oil as a substitute for gas chromatography. Journal of Food Research (Agricultural Science) 27: 139-149. (In Farsi)
27. Pearce, T. C., S. S. Schiffman, H. T. Nagle, and J. W. Gardner. 2006. Handbook of machine olfaction: electronic nose technology. John Wiley & Sons.
28. Pyle, D. 1999. Data preparation for data mining. morgan kaufmann.
29. Rizki, H., W. Terouzi, F. Kzaiber, H. Hanine, and A. Oussama. 2016. Quantification of Adulterations in Sesame Oil with Inferior Edible Oils by using ATR-FTIR Coupled to Chemometrics. IOSR Journal of Environmental Science, Toxicology and Food Technology, e-ISSN: 2319-2402.
30. Samadi, S., and M. Hosseyni nezhad. 2015. Smart sensors in the food industry: Technology and applications. (In Farsi)
31. Sanaeifar, A., S. Mohtasebi, M. Ghasemi-Varnamkhasti, and H. Ahmadi. 2014. Design, Construction and Performance Evaluation of a Metal Oxide Semiconductor (MOS) Based Machine Olfaction (Electronic Nose) for Monitoring of Banana Ripeness. Journal of Agricultural Machinery 5: 111-121.
32. Sega, A., I. Zanardi, L. Chiasserini, A. Gabbrielli, V. Bocci, and V. Travagli. 2010. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chemistry and Physics of Lipids 163: 148-156.
33. Seo, H. Y., J. Ha, D. B. Shin, S. L. Shim, K. M. No, K. S. Kim, K. B. Lee, and S. B. Han. 2010. Detection of corn oil in adulterated sesame oil by chromatography and carbon isotope analysis. Journal of the American Oil Chemists' Society 87: 621-626.
34. Šmejkalova, D., and A. Piccolo. 2010. High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chemistry 118: 153-158.
35. Tay, A., R. Singh, S. Krishnan, and J. Gore. 2002. Authentication of olive oil adulterated with vegetable oils using Fourier transform infrared spectroscopy. LWT-Food Science and Technology 35: 99-103.
36. Torrecilla, J. S., E. Rojo, J. C. Dominguez, and F. Rodriguez. 2010. A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV− vis. Journal of Agricultural and Food Chemistry 58: 1679-1684.
37. Varidi, M. J., M. Varidi, M. Vajdi, and A. Sharifpour. 2018. Design, development and application of electronic nose instrument to rapidly detect spoilage of air, vacuum and modified atmosphere packaged camel minced meat. Journal of Food Science and Technology 15.
38. Wojnowski, W., T. Majchrzak, T. Dymerski, J. Gębicki, and J. Namieśnik. 2017. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors 17: 2715.
39. Xu, L., X. Yu, L. Liu, and R. Zhang. 2016. A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chemistry 202: 229-235.
40. Xu, Y., M. Hassan, F. Kutsanedzie, H. Li, and Q. Chen. 2018. Evaluation of extra-virgin olive oil adulteration using FTIR spectroscopy combined with multivariate algorithms. Quality Assurance and Safety of Crops & Foods 10: 411-421.
41. Zhao, X., D. Dong, W. Zheng, L. Jiao, and Y. Lang. 2015. Discrimination of adulterated sesame oil using mid-infrared spectroscopy and chemometrics. Food Analytical Methods 8: 2308-2314.
CAPTCHA Image