با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه مدیریت مکانیزاسیون کشاورزی، جهاد کشاورزی استان لرستان، خرم‌آباد، ایران

چکیده

بهینه‌سازی مصرف نهاده، کاهش مصرف انرژی و اثرات مختلف زیست‌محیطی سیستم تولید ذرت در استان لرستان بر اساس تحلیل اکسرژی و ارزیابی چرخه حیات زیست‌محیطی مورد بررسی قرار گرفت. بر اساس نتایج به‌دست‌آمده و با توجه به معادله کاب-داگلاس، برق، سوخت دیزل و کود نیتروژن، بیشترین سهم را در مصرف اکسرژی تجمعی در سیستم تولید ذرت داشته‌اند. نتایج DEA نشان داد که میانگین راندمان تمام مزارع از نظر مصرف اکسرژی تجمعی در مدل‌های CCR و BCC، به‌ترتیب 94.7 و 97.8 درصد است. همچنین نتایج نشان داد که نهاده‌ها به‌ویژه کودهای پتاسیم و فسفات بیش از نیاز مصرف می‌شود. همچنین می‌توان 6.47، 10.42، 7.40، 13.32، 31.29، 3.25 و 6.78 درصد به‌ترتیب در مصرف اکسرژی سوخت دیزل، برق، ماشین‌ها، کودهای شیمیایی، سموم، بذر و انرژی آبیاری، با حفظ سطح عملکرد فعلی و تنها با ترویج روش‌های مورد استفاده توسط مزارع کارآمد، صرفه‌جویی کرد.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. In European Journal of Operational Research, 140, 249-265. North-Holland. https://doi.org/10.1016/S0377-2217(02)00068-1
  2. Ahamed, J. U., Saidur, R., Masjuki, H. H., Mekhilef, S., Ali, M. B., & Furqon, M. H. (2011). An application of energy and exergy analysis in agricultural sector of Malaysia. Energy Policy, 39(12), 7922-7929. https://doi.org/10.1016/j.enpol.2011.09.045
  3. Al-Ghandoor, A., & Jaber, J. O. (2009). Analysis of energy and exergy utilisation of Jordan’s agricultural sector. International Journal of Exergy, 6(4), 491-508. https://doi.org/10.1504/IJEX.2009.026674
  4. Alam, M. S., Alam, M. R., & Islam, K. K. (2005). Energy Flow in Agriculture: Bangladesh. American Journal of Environmental Sciences, 1(3), 213- https://doi.org/10.3844/ajessp.2005.213.220
  5. Amiri, Z., Asgharipour, M., Campbell, D. E., & Armin, M. (2020). Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran. Agricultural Systems, 180, 102789. https://doi.org/10.1016/j.agsy.2020.102789
  6. Anonymous. (2018). Energy Balance Sheet of Iran. Tehran: Iran Ministry of Energy Deputy of Electricity and Energy Affairs.
  7. Apazhev, A. K., Fiapshev, A. G., Shekikhachev, I. A., Khazhmetov, L. M., Khazhmetova, A. L., & Ashabokov, K. K. (2019). Energy efficiency of improvement of agriculture optimization technology and machine complex optimization. In E3S Web of Conferences (Vol. 124, p. 05054). EDP Sciences. https://doi.org/10.1051/e3sconf/201912405054
  8. Arts, W., Ruijten, D., Aelst, K. Van, Trullemans, L., & Sels, B. (2021). The RCF biorefinery: Building on a chemical platform from lignin. Advances in Inorganic Chemistry, 77, 241-297. https://doi.org/10.1016/BS.ADIOCH.2021.02.006
  9. Ashby, M. F. (2013). Eco-audits and eco-audit tools. Materials and the Environment, 175-191. https://doi.org/10.1016/B978-0-12-385971-6.00007-5
  10. Banaeian, N., & Zangeneh, M. (2011). Study on energy efficiency in corn production of Iran. Energy, 36(8), 5394-5402.
  11. Baumann, H., & Tillman, A. M. (2004). The Hitch Hiker’s Guide to LCA. An orientation in life cycle assessment methodology and application. Studentlitteratur Lund. Studentlitteratur AB.
  12. Bechmann, M., & Stålnacke, P. (2005). Effect of policy-induced measures on suspended sediments and total phosphorus concentrations from three Norwegian agricultural catchments. Science of the Total Environment, 344(1-3 SPEC. ISS.), 129-142. https://doi.org/10.1016/j.scitotenv.2005.02.013
  13. Beheshti Tabar, I., Keyhani, A., & Rafiee, S. (2010, February). Energy balance in Iran’s agronomy (1990-2006). Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2009.10.024
  14. Berthiaume, R., Bouchard, C., & Rosen., M. A. (2001). Exergetic evaluation of the renewability of a biofuel. Exergy, An International Journal, 1(4), 256-268.
  15. Bhunia, S., Karmakar, S., Bhattacharjee, S., Roy, K., Kanthal, S., Pramanick, M., …, & Mandal, B. (2021). Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices. Energy, 236, 121499. https://doi.org/10.1016/j.energy.2021.121499
  16. Bösch, M. E., Hellweg, S., Frischknecht, M. A. J., & Huijbregts, R. (2007). Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. The International Journal of Life Cycle Assessment, 12(181).
  17. Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., & Kuhlmann, H. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3), 265-279. https://doi.org/10.1016/S1161-0301(03)00039-X
  18. Cao, C. (2017). Sustainability and life assessment of high strength natural fibre composites in construction. Advanced High Strength Natural Fibre Composites in Construction, 529-544. https://doi.org/10.1016/B978-0-08-100411-1.00021-2
  19. Chauhan, N. S., Mohapatra, P. K. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking—An application of data envelopment analysis. Energy Conversion and Management, 47(9-10), 1063-1085. https://doi.org/10.1016/j.enconman.2005.07.004
  20. Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149. https://doi.org/10.3390/e3030116
  21. Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35-41. https://doi.org/10.1016/j.energy.2006.01.007
  22. EsmaeilpourTroujeni, M., Rohani, A., & Khojastehpour, M. (2021). Optimization of rapeseed production using exergy analysis methodology. Sustainable Energy Technologies and Assessments, 43, 100959. https://doi.org/10.1016/j.seta.2020.100959
  23. Fallahpour, F., Aminghafouri, A., Ghalegolab Behbahani, A., & Bannayan, M. (2012). The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability, 14(6), 979-992. https://doi.org/10.1007/s10668-012-9367-3
  24. Filipovic, D., Kosutic, S., Gospodaric, Z., Zimmer, R., & Banaj, D. (2006). The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agriculture, Ecosystems and Environment, 115(1-4), 290-294. https://doi.org/10.1016/j.agee.2005.12.013
  25. Finkbeiner, M., Inaba, A., Tan, R. B. H., Christiansen, K., & Klüppel, H. J. (2006, January). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment. Springer. https://doi.org/10.1065/lca2006.02.002
  26. Gezer, I., Acaroǧlu, M., & Haciseferoǧullari, H. (2003). Use of energy and labour in apricot agriculture in Turkey. Biomass and Bioenergy, 24(3), 215-219. https://doi.org/10.1016/S0961-9534(02)00116-2
  27. Gurdeep Singh, P., Sodhi, G. P. S., & Tiwari, D. (2021). Energy auditing and data envelopment analysis (DEA) based optimization for increased energy use efficiency in wheat cultivation (Triticum aestium) in north-western India. Sustainable Energy Technologies and Assessments, 47, 101453. https://doi.org/10.1016/j.seta.2021.101453
  28. Hai, Q., Zhiliang, D., Xinshang, Y., Li, Y., Zhao, Y., & Xiaotian, S. (2023). Extended exergy accounting for assessing the sustainability of agriculture: A case study of Hebei Province, China. Ecological Indicators, 150, 110240.
  29. Hatirli, S. A., Ozkan, B., & Fert, C. (2005, December). An econometric analysis of energy input-output in Turkish agriculture. Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2004.07.001
  30. Hatirli, S. A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31(4), 427-438.
  31. Hernandez, P., Oregi, X., Longo, S., & Cellura, M. (2019). Life-Cycle Assessment of Buildings. Handbook of Energy Efficiency in Buildings: A Life Cycle Approach, 207-261. https://doi.org/10.1016/B978-0-12-812817-6.00010-3
  32. Houshyar, E., & Grundmann, P. (2017). Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy, 122, 11-24. https://doi.org/10.1016/j.energy.2017.01.069
  33. IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. Hayama, Japan.: Institute for Global Environmental Strategies.
  34. Jacob-Lopes, E., Zepka, L. Q., & Deprá, M. C. (2021). Methods of evaluation of the environmental impact on the life cycle. In Sustainability Metrics and Indicators of Environmental Impact (pp. 29–70). Elsevier. https://doi.org/10.1016/b978-0-12-823411-2.00003-7
  35. Jalalvand, M., Bakhoda, H., & Almassi, M. (2014). Wind Energy Potential Assessment for Electric Pumps of Agriculture in Broujerd. Journal of Agricultural Machinery, 4(2), 368-377. (in Persian). https://doi.org/10.22067/jam.v4i2.34821
  36. Jat, H. S., Jat, R. D., Nanwal, R. K., Lohan, S. K., Yadav, A. K., Poonia, T., …, & Jat, M. L. (2020). Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renewable Energy, 155, 1372-1382. https://doi.org/10.1016/j.renene.2020.04.046
  37. Juárez-Hernández, S., Usón, S., & Pardo, C. S. (2019). Assessing maize production systems in Mexico from an energy, exergy, and greenhouse-gas emissions perspective. Energy, 170, 199-211. https://doi.org/10.1016/j.energy.2018.12.161
  38. Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. wing. (2019). Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy, 181, 1298-1320. https://doi.org/10.1016/j.energy.2019.06.002
  39. Khan, S., Khan, M. A., Hanjra, M. A., & Mu, J. (2009). Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy, 34(2), 141-149.
  40. KhojastehpourTroujeni, M., Esmailpour, M., Vahedi, A., & Emadi, B. (2018). Sensitivity analysis of energy inputs and economic evaluation of pomegranate production in Iran. Information Processing in Agriculture, 5(1), 114-123. https://doi.org/10.1016/j.inpa.2017.10.002
  41. Kitani, O. (1999). Energy and biomass engineering, CIGR handbook of agricultural engineering. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.36411
  42. Komleh Pishgar, S. H., Keyhani, A., Rafiee, S., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36(5), 3335-3341.
  43. Kylili, A., Seduikyte, L., & Fokaides, P. A. (2018). Life Cycle Analysis of Polyurethane Foam Wastes. Recycling of Polyurethane Foams, 97-113. https://doi.org/10.1016/B978-0-323-51133-9.00009-7
  44. Leiva, F. R., & Morris, J. (2001). Mechanization and sustainability in arable farming in England. Journal of Agricultural and Engineering Research, 79(1), 81-90. https://doi.org/10.1006/jaer.2000.0686
  45. Lovarelli, D., Bacenetti, J., & Fiala, M. (2017). Effect of local conditions and machinery characteristics on the environmental impacts of primary soil tillage. Journal of Cleaner Production, 140, 479-491. https://doi.org/10.1016/j.jclepro.2016.02.011
  46. Malana, N. M., & Malano, H. M. (2006). Benchmarking productive efficiency of selected wheat areas in Pakistan and India using data envelopment analysis. Irrigation and Drainage, 55(4), 383-394. https://doi.org/10.1002/ird.264
  47. Mani, I., Kumar, P., Panwar, J. S., & Kant, K. (2007). Variation in energy consumption in production of wheat-maize with varying altitudes in hilly regions of Himachal Pradesh, India. Energy, 32(12), 2336-2339. https://doi.org/10.1016/j.energy.2007.07.004
  48. Michalakakis, C., Fouillou, J., Lupton, R. C., Gonzalez Hernandez, A., & Cullen, J. M. (2021). Calculating the chemical exergy of materials. Journal of Industrial Ecology, 25(2), 274-287. https://doi.org/10.1111/jiec.13120
  49. Milà I Canals, L., Burnip, G. M., & Cowell, S. J. (2006). Evaluation of the environmental impacts of apple production using Life Cycle Assessment (LCA): Case study in New Zealand. Agriculture, Ecosystems and Environment, 114(2-4), 226-238. https://doi.org/10.1016/j.agee.2005.10.023
  50. Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment, 137(3-4), 367-372. https://doi.org/10.1016/j.agee.2010.03.011
  51. Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M. T., Keyhani, A., …, & Hermansen, J. E. (2013). Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 54, 89-100. https://doi.org/10.1016/j.jclepro.2013.05.019
  52. Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S. H., & Nonhebel, S. (2014, February). Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2013.11.012
  53. Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011a). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765-2772. https://doi.org/10.1016/j.energy.2011.02.016
  54. Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy, 88(11), 3765-3772. https://doi.org/10.1016/j.apenergy.2011.04.021
  55. Nemecek, T., Dubois, D., Huguenin-Elie, O., & Gaillard, G. (2011). Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems, 104(3), 217-232. https://doi.org/10.1016/j.agsy.2010.10.002
  56. Nikkhah, A., Khojastehpour, M., Emadi, B., Taheri-Rad, A., & Khorramdel, S. (2015). Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92, 84-90. https://doi.org/10.1016/j.jclepro.2014.12.048
  57. Ordikhani, H., Parashkoohi, M. G., Zamani, D. M., & Ghahderijani, M. (2021). Energy-environmental life cycle assessment and cumulative exergy demand analysis for horticultural crops (Case study: Qazvin province). Energy Reports, 7, 2899-2915. https://doi.org/10.1016/j.egyr.2021.05.022
  58. Papapetrou, M., & Kosmadakis, G. (2022). Resource, environmental, and economic aspects of SGHE. Salinity Gradient Heat Engines, 319-353. https://doi.org/10.1016/B978-0-08-102847-6.00006-1
  59. Parihar, C. M., Jat, S. L., Singh, A. K., Kumar, B., Rathore, N. S., Jat, M. L., …, & Kuri, B. R. (2018). Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India. Energy, 142, 289-302. https://doi.org/10.1016/j.energy.2017.10.015
  60. Parvaresh Rizi, A., & Ashrafzadeh, A. (2018). Techno-economic Analysis of Solar Irrigation: Comparison with Conventional Energy Sources for Irrigation. Journal of Energy Planning And Policy Research, 4(2), 201-228.
  61. Pelvan, E., & Özilgen, M. (2017). Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea production and waste valorization processes. Sustainable Production and Consumption, 12, 59-77. https://doi.org/10.1016/j.spc.2017.05.003
  62. Pishgar-Komleh, S. H., Keyhani, A., Mostofi-Sarkari, M. R., & Jafari, A. (2012). Energy and economic analysis of different seed corn harvesting systems in Iran. Energy, 43(1), 469-476. https://doi.org/10.1016/j.energy.2012.03.040
  63. Powar, R. V., Mehetre, S. A., Patil, P. R., Patil, R. V., Wagavekar, V. A., Turkewadkar, S. G., & Patil, S. B. (2020). Study on Energy Use Efficiency for Sugarcane Crop Production Using the Data Envelopment Analysis (DEA) Technique. Journal of Biosystems Engineering, 45(4), 291-309. https://doi.org/10.1007/s42853-020-00070-x
  64. Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S., & Pant, D. (2020, May). Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource Technology. Elsevier. https://doi.org/10.1016/j.biortech.2020.122964
  65. Ptasinski, K. J. (2016). Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781119118169
  66. Rahman, S., & Hasan, M. K. (2014). Energy productivity and efficiency of wheat farming in Bangladesh. Energy, 66, 107-114. https://doi.org/10.1016/j.energy.2013.12.070
  67. Royan, M., Khojastehpour, M., Emadi, B., & Mobtaker, H. G. (2012). Investigation of energy inputs for peach production using sensitivity analysis in Iran. In Energy Conversion and Management 64, 441-446. Pergamon. https://doi.org/10.1016/j.enconman.2012.07.002
  68. Sartor, K., & Dewallef, P. (2017). Exergy analysis applied to performance of buildings in Europe. Energy and Buildings, 148, 348-354. https://doi.org/10.1016/j.enbuild.2017.05.026
  69. Shah, S. M., Liu, G., Yang, Q., Casazza, M., Agostinho, F., & Giannetti, B. F. (2021). Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation. Ecological Modelling, 455, 109654. https://doi.org/10.1016/j.ecolmodel.2021.109654
  70. Shahhoseini, H. R., Ramroudi, M., Kazemi, H., & Amiri, Z. (2021). Sustainability assessment of autumn and spring potato production systems using extended exergy analysis (EEA). Energy, Ecology and Environment, 1-12. https://doi.org/10.1007/s40974-021-00222-5
  71. Shojaei, M., & Akhavan, S. (2020). Economic assessment of photovoltaic (PV) water pumping system in drip-irrigated fields. Iranian Water Researches Journal, 14(1), 19-28.
  72. Singh, A., Pant, D., Korres, N. E., Nizami, A. S., Prasad, S., & Murphy, J. D. (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource Technology, 101(13), 5003-5012. https://doi.org/10.1016/j.biortech.2009.11.062
  73. Singh, Gursahib, Singh, S., & Singh, J. (2004). Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management, 45(3), 453-465. https://doi.org/10.1016/S0196-8904(03)00155-9
  74. Singh, P., Singh, G., & Sodhi, G. P. S. (2019). Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India. Energy, 181, 18-28. https://doi.org/10.1016/j.energy.2019.05.147
  75. Soltanali, H., Nikkhah, A., & Rohani, A. (2017). Energy audit of Iranian kiwifruit production using intelligent systems. Energy, 139, 646-654. https://doi.org/10.1016/j.energy.2017.08.010
  76. Su, X., Shao, X., Tian, S., Li, H., & Huang, Y. (2021). Life cycle assessment comparison of three typical energy utilization ways for corn stover in China. Biomass and Bioenergy, 152, 106199.
  77. Thankappan, S., Midmore, P., & Jenkins, T. (2006). Conserving energy in smallholder agriculture: A multi-objective programming case-study of northwest India. Ecological Economics, 56(2), 190-208. https://doi.org/10.1016/j.ecolecon.2005.01.017
  78. Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2), 101-119. https://doi.org/10.1016/j.agsy.2004.07.015
  79. Vlontzos, G., Niavis, S., & Manos, B. (2014, December). A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries. Renewable and Sustainable Energy Reviews. Pergamon. https://doi.org/10.1016/j.rser.2014.07.153
  80. William Cochran. (1991). Sampling Techniques (3rd Editio). New York: John Wiley and Sons.
  81. Yildizhan, H. (2018). Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field. Energy, 143, 417-423. https://doi.org/10.1016/j.energy.2017.10.139
  82. Yildizhan, H., & Taki, M. (2018). Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey. Energy, 156, 401-408. https://doi.org/10.1016/j.energy.2018.05.117
  83. Yildizhan, H., & Taki, M. (2019). Sustainable management and conservation of resources for different wheat production processes; cumulative exergy consumption approach. International Journal of Exergy, 28(4), 404-422. https://doi.org/10.1504/IJEX.2019.099295
  84. Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30(2), 145-155. https://doi.org/10.1016/j.renene.2004.06.001
  85. Yousefi, M., Khoramivafa, M., & Mondani, F. (2014). Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92, 501-505. https://doi.org/10.1016/j.atmosenv.2014.04.050
  86. Yousefi, M., Mahdavi, A., & Mahmud, D. K. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment, 493, 330-335.
  87. Yuan, S., Peng, S., Wang, D., & Man, J. (2018). Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy, 160, 184-191. https://doi.org/10.1016/j.energy.2018.07.006
CAPTCHA Image