نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
2 گروه علوم و مهندسی صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران
چکیده
شاخص زبری تصادفی بهدلیل سهولت محاسبات و قابلیت اطمینان خوب، مناسبترین شاخص برای جداسازی کلاسهای زبری و توصیف شدت و کیفیت خاکورزی است. اکثر روشهای مرسوم مورد استفاده از رهیافت توقف و حرکت در اندازهگیری زبری خاک بهره میگیرند؛ که بسیار پر زحمت و وقتگیر است. در پژوهش حاضر از حسگرهای فاصلهیاب نوری برای اندازهگیری بلادرنگ زبری خاک استفاده شد؛ که سرعت اندازهگیری آن نسبت به روشهای دیگر بیشتر است. از برازش بین فاصله اندازهگیریشده توسط حسگرها و پینمتر یک رابطه خطی بین این دو متغیر حاصل شد. هر دو حسگر فاصلهیاب در شرایط استاتیکی توانستند بهخوبی فاصله را اندازهگیری کنند (0.98=R2)، صحت و دقت هر دو حسگر نوری مادون قرمز و لیزری بر روی سیستم متحرک، در مزرعه مورد ارزیابی قرار گرفت. صحت دادههای بهدستآمده از حسگر لیزر در سرعتهای کمتر از km h-1 2.6، همانند روش پینمتر بود ولی در سرعتهای بیش از km h-13.5 روش لیزری فقط توانست کلاس زبری نرم را بهدرستی تشخیص دهد. کاهش صحت عملکرد حسگر، بهدلیل کاهش نرخ جمعآوری دادهها در واحد طول و وجود کلوخههای بزرگ در کلاسهای زبرتر بود. روش مادون قرمز فقط سطوح نرم را همانند پینمتر تشخیص داد. در سرعت رو به جلو کمتر از km h-1 3.5، دادههای حسگر لیزری از دقت خوبی برخوردار بود (R2=0.85)، با این حال، با افزایش سرعت رو به جلو به km h-1 4.8، دقت عملکرد حسگر کاهش یافت (0.72= R2). میتوان نتیجه گرفت با استفاده از حسگرهای لیزری با نرخ دادهبرداری بیشتر، تشخیص سطوح زبری بهخوبی روش پینمتر امکانپذیر خواهد بود.
کلیدواژهها
موضوعات
- Aguilar, M. A., Aguilar, F. J., & Negreiros, J. (2009). Off-the-shelf laser scanning and close-range digital photogrammetry for measuring agricultural soils microrelief. Biosystems Engineering, 103(4), 504-517. https://doi.org/10.1016/j.biosystemseng.2009.02.010
- Al-Suhaibani, S. A., & Ghaly, A. E. (2010). Effect of plowing depth of tillage and forward speed on the performance of a medium size chisel plow operating in a sandy soil. American Journal of Agricultural and Biological Sciences,5(3):247-255. https://doi.org/10.3844/ajabssp.2010.247.255
- Allmaras, R. R., Burwell, R. E., Larson, W. E., & Holt, R. F. (1966). Total porosity and random roughness of the interrow zone as influenced by tillage. USDA Conservation Research Report, 7, 1-14.
- Amoah, J., Amatya, D. M., & Nnaji, S. (2013). Quantifying watershed surface depression storage: Determination and application in a hydrologic model. Hydrological Processes, 27(17). 2401-2413. https://doi.org/10.1002/hyp.9364
- Anthonis, J., Mouazen, A. M., Saeys, W., & Ramon, H. (2004). An automatic depth control system for online measurement of spatial variation in soil compaction, Part 3: Design of depth control system. Biosystems Engineering, 89(1), 59-67. https://doi.org/10.1016/j.biosystemseng.2004.06.013
- ASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken.
- Bagheri, M. A. (2023). 3D surface profile extraction using image processing, The ninth international Conference on Knowledge and Technology of Mechanical, Electrical Engineering and Computer of Iran, Tehran. (in Persian with English abstract).
- Bauer, T., Strauss, P., Grims, M., Kamptner, E., Mansberger, R., & Spiegel, H. (2015). Long-term agricultural management effects on surface roughness and consolidation of soils. Soil and Tillage Research, 151, 28-38. https://doi.org/10.1016/j.still.2015.01.017
- Carvajal, F., Aguilar, M. A., Agüera, F., Aguilar, F. J., & Giráldez, J. V. (2006). Maximum depression storage and surface drainage network in uneven agricultural landforms. Biosystems Engineering, 95(2), 281-293. https://doi.org/10.1016/j.biosystemseng.2006.06.003
- Cierniewski, J., Karnieli, A., Kazmierowski, C., Krolewicz, S., Piekarczyk, J., Lewinska, K., Goldberg, A., Wesolowski, R., & Orzechowski, M. (2015). Effects of soil surface irregularities on the diurnal variation of soil broadband blue-sky albedo. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 493-502. https://doi.org/10.1109/JSTARS.2014.2330691
- Cremers, N. H. D. T., Van Dijk, P. M., De Roo, A. P. J., & Verzandvoort, M. A. (1996). Spatial and temporal variability of soil surface roughness and the application in hydrological and soil erosion modeling. Hydrological Process, 10, 1035-1047. https://doi.org/10.1002/(sici)1099-1085(199608)
- Dalla Rosa, J., Cooper, M., Darboux, F., & Medeiros, J. C. (2012). Soil roughness evolution in different tillage systems under simulated rainfall using a semivariogram-based index. Soil and Tillage Research, 124, 226-232. https://doi.org/10.1016/j.still.2012.06.001
- Draelos, M., Deshpande, N., & Grant, E. (2012). The Kinect up close: Adaptations for short-range imaging. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 251-256. https://doi.org/10.1109/mfi.2012.6343067
- Fallahi, E., Aghkhani, M. H., & Bayati, M. R. (2015). Design construction and evaluation of the automatics position control system of tillage tools. Iranian Journal of Biosystem Engineering, 46(2), 117-123. (in Persian with English abstract).
- García Moreno, R., Díaz Alvarez, M. C., Tarquis Alonso, A. M., Paz Gon´zalez, A., & Saa´ Requejo, A. (2010). Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief. Biogeosciences, 7, 2477-2487. https://doi.org/10.5194/bg-7-2477-2010
- Gilliot, J. M., Vaudour, E., & Michelin, J. (2017). Soil surface roughness measurement: A new fully automatic photogrammetric approach applied to agricultural bare fields. Computers and Electronics in Agriculture, 134, 63-78. https://doi.org/10.1016/j.compag.2017.01.010
- Gohari, M., Hemmat, A., & Afzal, A. (2010). Design Construction and evaluation of a variable-depth tillage implement equipped with a GPS. Iranian Journal of Biosystem Engineering, 41(1), 1-9. (in Persian with English abstract).
- Govers, G., Takken, I., & Helming, K. (2000). Soil roughness and overland flow. Agronomie, 20 (2), 131-146. https://doi.org/10.1051/agro:2000114
- Guzha, A. C. (2004). Effects of tillage on soil microrelief, surface depression storage and soil water storage. Soil and Tillage Research, 76, 105-114. https://doi.org/10.1016/j.still.2003.09.002
- Jensen, T., Karstoft, H., Green, O., & Munkholm, L. J. (2017). Assessing the effect of the seedbed cultivator leveling tines on soil surface properties using laser range scanners. Soil and Tillage Research, 167, 54-60. https://doi.org/10.1016/j.still.2016.11.006
- Jester, W., & Klik, A. (2005). Soil surface roughness measurement—methods, applicability, and surface representation. Catena, 64(2-3), 174-192. https://doi.org/10.1016/j.catena.2005.08.005
- Haubrock, S., Kuhnert, M., Chabrillat, S., Güntner, A., & Kaufmann, H. (2009). Spatiotemporal variations of soil surface roughness from in-situ laser scanning, Catena, 79. 128-139. https://doi.org/10.1016/j.catena.2009.06.005
- ISO 17892-1. (2014). Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination of water content. International Organization for Standardization, 10 pp.
- Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Scharf, P. C., Palm, H. L., Roberts, D. F., & Vories, E. D. (2010). Ground-based canopy reflectance sensing for variable-rate nitrogen corn fertilization. Agronomy Journal. 102, 71-84. https://doi.org/10.2134/agronj2009.0114
- Koval, L., Vaňuš, J., & Bilík, P. (2016). Distance measuring by ultrasonic sensor. IFAC-PapersOnLine, 49(25), 153-158. https://doi.org/10.1016/j.ifacol.2016.12.026
- Kuipers, H. (1957). A reliefmeter for soil cultivation studies. Netherlands Journal of Agricultural Science, 5, 255-262. https://doi.org/10.18174/njas.v5i4.17727
- Lee, J., Yamazaki, M., Oida, A., Nakashima, H., & Shimizu, H. (1996). Non-contact sensors for distance measurement from ground surface. Journal of Terramechanics, 33(3), 155-165. https://doi.org/10.1016/s0022-4898(96)00016-x
- Lin, B. B., & Richards, P. L. (2007). Soil Random Roughness and Depression Storage on Coffee Farms of Varying Shade Levels. Agricultural Water Management, 92(3), 194-204. https://doi.org/10.1016/j.agwat.2007.05.014
- Maleki, M. R., Mouazen, A. M., De Ketelaere, B., Ramon, H., & De Baerdemaeker, J. (2008). On-the-go variable rate phosphorus fertilization based on a VIS-NIR. Biosystems Engineering, 99(1), 35-46. https://doi.org/10.1016/j.biosystemseng.2007.09.007
- Marinello, P. F., Gasparini, A., Arvidsson, F., & Sartori, J. L. (2015). Application of the Kinect sensor for dynamic soil surface characterization. Precision Agriculture, 16(6), 601-612. https://doi.org/10.1007/s11119-015-9398-5
- Martinez-Agirre, A., Alvarez-Mozos, J., & Gi´menez, R. (2016). Evaluation of surface´roughness parameters in agricultural soils with different tillage conditions using a laser profile meter. Soil and Tillage Research, 161, 19-30 https://doi.org/10.1016/j.still.2016.02.013 .
- Marzahn, P., Seidel, M., & Ludwig, R. (2012). Decomposing dual scale soil surface roughness for microwave remote sensing applications. Remote Sensor Journal. 4. 2016-2032. https://doi.org/10.3390/rs4072016
- Matthias, A. D., Fimbres, A., Sano, E. E., Post, D. F., Accioly, L., Batchily, A. K., & Ferreira, L. G. (2000). Surface roughness effects on soil albedo. Soil Science Society of America Journal, 64(3), 1035-1041, https://doi.org/10.2136/sssaj2000.6431035x
- Mohammadi, F., Maleki, M. R., & Khodaei, J. (2022). Control of variable rate system of a rotary tiller based on real-time measurement of soil surface roughness. Soil and Tillage Research, 215, 105216 https://doi.org/10.1016/j.still.2021.105216 .
- Mohammadi, F., Maleki, M. R., & Khodaei, J. (2023). Laboratory evaluation of infrared and ultrasonic range-finder sensors for on-the-go measurement of soil surface roughness. Soil and Tillage Research, 229, https://doi.org/10.1016/j.still.2023.105678
- Moreno, R. G., Álvarez, M. C. D., Alonso, A. T., Barrington, S., & Requejo, A. S. (2008). Tillage and soil type effects on soil surface roughness at semiarid climatic conditions. Soil and Tillage Research, 98(1), 35-44. https://doi.org/10.1016/j.still.2007.10.006
- Mouazen, A. M., Maleki, M. R., De Baerdemaeker, J., & Ramon H. (2007). On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil and Tillage Research, 93(1), 13-27. https://doi.org/10.1016/j.still.2006.03.009
- Nayerifard, T. (2015). Extraction of three-dimensional soil surface profile using laser based on digital image processing, Faculty of Agriculture. Bu Ali Sina University. (in Persian with English abstract).
- Podmore, T. H., & Huggins, L. F. (1981). An automated profile meter for surface roughness measurements. Transactions of the American Society of Agricultural Engineers, 24(3), 663-665. https://doi.org/10.13031/2013.34317
- Römkens, M. J. M., Singarayar, S., & Gantzer, C. J. (1986). An automated non-contact surface profile meter. Soil and Tillage Research, 6, 193-202. https://doi.org/10.1016/0167-1987(86)90454-x
- Saleh, A. (1993). Soil roughness measurement: chain method. Journal of Soil and Water Conservation, 48(6), 527-529. https://doi.org/10.1080/00224561.1993.12456826
- Sharda, A., Franzen, A., David, E., Clay, J., & Luck, D. (2019). Precision Variable Equipment. Crop Science Society of America, and Soil Science Society of America. P. 155-168. https://doi.org/10.2134/precisionagbasics.2016.0094
- Smith, M.W. (2014). Roughness in the earth sciences. Earth-Science Reviews, 136, 202-225. https://doi.org/10.1016/j.earscirev.2014.05.016
- Thomsen, L. M., Baartman, J. E. M., Barneveld, R. J., Starkloff, T., & Stolte, J. (2015). Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model. Soil, 1(1), 399-410. https://doi.org/10.5194/soil-1-399-2015
- Vermang, J., Norton, L. D., Baetens, J. M., Huang, C., Cornelis, W. M., & Gabriels, D. (2013). Quantification of soil surface roughness evolution under simulated rainfall. Transactions of the American Society of Agricultural Engineers, 56(2), 505-514. https://doi.org/10.13031/2013.42670
- Weidong, L., Baret, F., Xingfa, G., Qingxi, T., Lanfen, Z., & Bing, Z. (2002). Relating soil surface moisture to reflectance. Remote Sensing of Environment, 81(2-3), 238-246. https://doi.org/10.1016/s0034-4257(01)00347-9
- Zribi, M., Ciarletti, V., & Taconet, O. (2000). Validation of a rough surface model based on fractional brownian geometry with SIRC and ERASME radar data over orgeval. Remote Sensing of Environment, 73, 65-72. https://doi.org/10.1016/s0034-4257(00)00082-1
ارسال نظر در مورد این مقاله